K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(a,x\ne2;x\ne-2;x\ne0\)

\(b,A=\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\frac{6}{x+2}\)

\(=\frac{x-2\left(x+2\right)+x-2}{\left(x-2\right)\left(x+2\right)}:\frac{6}{x+2}\)

\(=\frac{-6}{\left(x-2\right)\left(x+2\right)}:\frac{6}{x+2}\)

\(=\frac{-6}{\left(x-2\right)\left(x+2\right)}.\frac{x+2}{6}\)

\(=\frac{1}{2-x}\)

\(c,\)Để A > 0 thi \(\frac{1}{2-x}>0\Leftrightarrow2-x>0\Leftrightarrow x< 2\)

12 tháng 11 2018

a, ĐKXĐ: \(\hept{\begin{cases}5x+25\ne0\\x\ne0\\x^2+5x\ne0\end{cases}\Rightarrow\hept{\begin{cases}5\left(x+5\right)\ne0\\x\ne0\\x\left(x+5\right)\ne0\end{cases}\Rightarrow}}\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}\)

b, \(P=\frac{x^2}{5x+25}+\frac{2x-10}{x}+\frac{50+5x}{x^2+5x}\)

\(=\frac{x^3}{5x\left(x+5\right)}+\frac{5\left(2x-10\right)\left(x+5\right)}{5x\left(x+5\right)}+\frac{\left(50+5x\right).5}{5x\left(x+5\right)}\)

\(=\frac{x^3+10\left(x-5\right)\left(x+5\right)+250+25x}{5x\left(x+5\right)}\)

\(=\frac{x^3+10x^2+25x}{5x\left(x+5\right)}=\frac{x\left(x+5\right)^2}{5x\left(x+5\right)}=\frac{x+5}{5}\)

c, \(P=-4\Rightarrow\frac{x+5}{5}=-4\Rightarrow x+5=-20\Rightarrow x=-25\)

d, \(\frac{1}{P}\in Z\Rightarrow\frac{5}{x+5}\in Z\Rightarrow5⋮\left(x+5\right)\Rightarrow x+5\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\Rightarrow x\in\left\{-10;-6;-4;0\right\}\)

Mà x khác 0 (ĐKXĐ của P) nên \(x\in\left\{-10;-6;-4\right\}\)

21 tháng 9 2019

a) \(ĐKXĐ:\hept{\begin{cases}5x+25\ne0\\x\ne0\\x^2+5x\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}\)

b) \(P=\frac{x^2}{5x+25}+\frac{2x-10}{x}+\frac{50+5x}{x^2+5x}\)

\(P=\frac{x^3}{5x\left(x+5\right)}+\frac{10x^2-250}{5x\left(x+5\right)}+\frac{250+25x}{5x\left(x+5\right)}\)

\(P=\frac{x^3+10x^2+25x}{5x\left(x+5\right)}=\frac{x\left(x+5\right)^2}{5x\left(x+5\right)}=\frac{x+5}{5}\)

c) \(P=4\Leftrightarrow\frac{x+5}{5}=4\Leftrightarrow x+5=20\Leftrightarrow x=15\)

d) \(\frac{1}{P}=\frac{5}{x+5}\in Z\Leftrightarrow5⋮x+5\)

\(\Leftrightarrow x+5\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Lập bảng nhé

e) \(Q=P+\frac{x+25}{x+5}=\frac{x+30}{x+5}=1+\frac{25}{x+5}\)

\(Q_{min}\Leftrightarrow\frac{25}{x+5}_{min}\)

9 tháng 3 2020

ĐKXĐ:\(x\ne\pm2;x\ne0;x\ne3\)

\(A=\left(\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\frac{x^2-3x}{2x^2-x^3}\)

\(=\left[\frac{\left(2+x\right)^2}{\left(2-x\right)\left(2+x\right)}+\frac{4x^2}{\left(2-x\right)\left(2+x\right)}-\frac{\left(2-x\right)^2}{\left(2-x\right)\left(2+x\right)}\right]:\frac{x\left(x-3\right)}{x^2\left(2-x\right)}\)

\(=\frac{4+4x+x^2+4x^2-4+4x-x^2}{\left(2-x\right)\left(2+x\right)}\cdot\frac{x\left(2-x\right)}{x-3}\)

\(=\frac{4x^2+8x}{\left(2-x\right)\left(2+x\right)}\cdot\frac{x\left(2-x\right)}{x-3}\)

\(=\frac{4x^2}{x-3}\)

b

Tại x=-2 thì biểu thức trên không xác định

Vậy A không xác định tại x=-2

c

\(A>0\Leftrightarrow\frac{4x^2}{x-3}>0\) mà \(4x^2>0\) ( nên nhớ là ĐKXĐ x khác 0 ) nên x-3 >0 hay x > 3

d

\(\left|x-7\right|=4\Leftrightarrow x-7=4\left(h\right)x-7=-4\)

\(\Leftrightarrow x=11\left(h\right)x=3\)

Loại trường hợp x=3 bạn thay x=11 vào tính tiếp nha !!!!!

22 tháng 6 2020

Bài làm:

a) \(đkxd:x\ne2;x\ne-2;x\ne0;x\ne3\)

Ta có: \(A=\left(\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\left(\frac{x^2-3x}{2x^2-x^3}\right)\)

\(A=\left(\frac{\left(x+2\right)^2+4x^2-\left(2-x\right)^2}{\left(2-x\right)\left(2+x\right)}\right):\left(\frac{x\left(x-3\right)}{x^2\left(2-x\right)}\right)\)

\(A=\left[\frac{x^2+4x+4+4x^2-4+4x-x^2}{\left(2-x\right)\left(2+x\right)}\right]:\frac{x-3}{x\left(2-x\right)}\)

\(A=\frac{4x^2+8x}{\left(2-x\right)\left(2+x\right)}.\frac{x\left(2-x\right)}{x-3}\)

\(A=\frac{4x\left(x+2\right)}{\left(2-x\right)\left(2+x\right)}.\frac{x\left(2-x\right)}{x-3}\)

\(A=\frac{4x^2}{x-3}\)

b) Ta có: \(4x^2>0\left(\forall x\ne0\right)\)

=> Để A>0 thì \(x-3>0\)

\(\Rightarrow x>3\)

Vậy với \(x>3\)thì A>0

c) Ta có: \(\left|x-7\right|=4\)\(\Rightarrow\orbr{\begin{cases}x-7=4\\x-7=-4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=11\\x=3\end{cases}}\)

Mà theo điều kiện xác định, \(x\ne3\)

\(\Rightarrow x=11\)

Khi đó, \(A=\frac{4.11^2}{11-3}=\frac{121}{2}\)

Vậy \(A=\frac{121}{2}\)

Học tốt!!!!

25 tháng 3 2018

d)  \(A>0\Leftrightarrow\frac{-1}{x-2}>0\)

\(\Leftrightarrow x-2< 0\)  ( vì \(-1< 0\))

\(\Leftrightarrow x< 2\)

25 tháng 3 2018

\(A=\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)

\(A=\)\(\left[\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{\left(x-2\right)\left(x+2\right)}\right]\)

  \(:\left[\frac{\left(x-2\right)\left(x+2\right)}{x+2}+\frac{10-x^2}{x+2}\right]\)

\(A=\frac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}:\left[\frac{x^2-4+10-x^2}{x+2}\right]\)

\(A=\frac{-6}{\left(x-2\right)\left(x+2\right)}:\frac{6}{x+2}\)

\(A=\frac{-6}{\left(x-2\right)\left(x+2\right)}.\frac{x+2}{6}\)

\(A=\frac{-1}{x-2}\)