Tìm nghiệm nguyên của phương trình: \(x^2+5y^2-4xy+4x-8y-12=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(PT\Leftrightarrow\left(x^2-4xy+4y^2\right)+4x-8y+4+y^2-16=0\)
\(\Leftrightarrow\left(x-2y\right)^2+4\left(x-2y\right)+4+y^2=16\)
\(\Leftrightarrow\left(x-2y+2\right)^2+y^2=16\)
Vì \(\left(x+2y+2\right)^2+y^2\) là tổng hai số chính phương
nên \(\left(\left(x+2y+2\right)^2;y^2\right)\in\left\{0;16\right\}\)xét 2 TH là ra
PT <=> \(x^2-4x\left(y-1\right)+5y^2-8y-12=0\)
Xét \(\Delta'=\left[-2\left(y-1\right)\right]^2-1.\left(5y^2-8y-12\right)\)
= \(4\left(y^2-2y+1\right)-5y^2+8y+12\)
= \(-y^2+16\)
Để PT có nghiệm <=> \(\Delta'\ge0< =>-y^2+16\ge0\)
<=> \(y^2\le16\) <=> \(-4\le y\le4\)
Mà y nguyên
<=> \(y\in\left\{-4;-3;-2;-1;0;1;2;3;4\right\}\)
Đến đây bn thay y vào PT để tìm x nhé
Bạn sửa lại đề đi:
Tìm nghiệm nguyên của phương trình: \(^{x^2-4xy+5y^2+10x-22y+26=0}\)
Ta có: \(x^2-4xy+5y^2-16=0\)
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+y^2=16\)
\(\Leftrightarrow\left(x-2y\right)^2+y^2=16\)
Vì \(x;y\in Z\Rightarrow\left(x-2y\right)^2\in Z;y^2\in Z\)
Và \(\left(x-2y\right)^2\ge0,y^2\ge0\)
\(\left(x;y\right)=\left(8;4\right),\left(-8;-4\right),\left(4;0\right),\left(-4;0\right)\)
Ta có các tập nghiệm: \(\left(x;y\right)=\left(8;4\right),\left(-8;-4\right),\left(4;0\right),\left(-4;0\right)\) thì thỏa mãn phương trình
PT \(\Leftrightarrow x^2+\left(-4y\right).x+\left(5y^2-16\right)=0\)
Để PT trên có nghiệm \(\Leftrightarrow\Delta=\left(-4y\right)^2-4\left(5y^2-16\right)\ge0\)
\(\Leftrightarrow16y^2-20y^2+64\ge0\Leftrightarrow-4y^2+64\ge0\Leftrightarrow-4y^2\ge-64\)
\(\Leftrightarrow y^2\le16\Rightarrow-4\le y\le4\)
Đến đây xét các giá trị của y là tìm ra x
\(x^2-4xy+5y^2-16=0\)
\(\Leftrightarrow\left(x-2y\right)^2+y^2=16\)
Ta xét các TH:
TH1: \(\left\{{}\begin{matrix}x-2y=0\\y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=4\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}x-2y=4\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\)
Vậy ta tìm được cặp số (x; y) là \(\left(8;4\right);\left(4;0\right)\)
\(2x^2+5y^2-4xy-8y-4x+14=0\)
\(\Leftrightarrow\left(2x^2+2y^2-4xy\right)+3y^2-8y-4x+14=0\)
\(\Leftrightarrow2\left(x^2+y^2-2xy\right)-4\left(x-y\right)-12y+3y^2+14=0\)
\(\Leftrightarrow2\left[\left(x-y\right)^2-2\left(x-y\right)+1\right]+3y^2-12y+12\)
\(\Leftrightarrow2\left(x-y-1\right)^2+3\left(y-2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=3\end{matrix}\right.\)
Ta có:
\(x^2+5y^2-4xy+4x-8y-12=0\)
\(\Leftrightarrow x^2-4xy+4x+4y^2-8y+4+y^2-16=0\)
\(\Leftrightarrow\left[x^2-\left(4xy-4x\right)+\left(4y^2-8y+4\right)\right]+y^2=16\)
\(\Leftrightarrow\left[x^2-4x\left(y-1\right)+4\left(y-1\right)^2\right]+y^2=16\)
\(\Leftrightarrow\left(x-2y+2\right)^2+y^2=16\)
Do \(x,y\in Z\) => \(\left(x-2y+2\right)^2\) và \(y^2\) là 2 số chính phương.
Mà do tổng 2 số chính phương này là 16 => Một trong hai số chính phương là 16 và số còn lại là 0.
Ta có bảng sau:
Vậy các nghiệm nguyên của phương trình là:
\(\left(x;y\right)=\left(6;4\right);\left(-10;-4\right);\left(2;0\right);\left(-6;0\right)\)