\(x^2-4xy+5y^2-16=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2023

\(x^2-4xy+5y^2-16=0\)

\(\Leftrightarrow\left(x-2y\right)^2+y^2=16\)

Ta xét các TH:

TH1: \(\left\{{}\begin{matrix}x-2y=0\\y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=4\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}x-2y=4\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\)

Vậy ta tìm được cặp số (x; y) là \(\left(8;4\right);\left(4;0\right)\)

5 tháng 12 2018

\(x^2-4xy+5y^2=2\left(x-y\right)\)

\(\Leftrightarrow x^2-4xy+5y^2-2x+2y=0\)

\(\Leftrightarrow\left(x-2y\right)^2-2\left(x-2y\right)+1+y^2-2y+1=2\)

\(\Leftrightarrow\left(x-2y-1\right)^2+\left(y-1\right)^2=2\)

Vì x,y là số nguyên nên ta có các trường hợp: 

TH1: \(\hept{\begin{cases}x-2y-1=1\\y-1=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=6\\y=2\end{cases}}\)

TH2: \(\hept{\begin{cases}x-2y-1=-1\\y-1=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=0\end{cases}}\)

TH3: \(\hept{\begin{cases}x-2y-1=-1\\y-1=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=4\\y=2\end{cases}}\)

TH4: \(\hept{\begin{cases}x-2y-1=1\\y-1=-1\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\y=0\end{cases}}\)

Vậy \(\left(x;y\right)\in\left\{\left(6;2\right),\left(0;0\right),\left(4;2\right),\left(2;0\right)\right\}\)

\(\)

7 tháng 11 2019

x2−4xy+5y2=17x2−4xy+5y2=2

⇔(x−2y)2+y2=17⇔(x−2y)2+y2=2

= 2 + 1

= 1 + 2

Ta có bảng sau:

x-2y11-1-144-4-4
y4-44-41-11-1
x9-77-962-2-6
y4-44-41-11-1

Vậy (x;y)={(9;4);(−7;−4);(7;4);(−9;−4);(6;1);(2;−1);(−2;1);(−6;−1)}

18 tháng 5 2018

\(x^2y^2-x^2-7y^2=4xy\)

\(\Leftrightarrow x^2+4xy+4y^2=x^2y^2-3y^2\)

\(\Leftrightarrow\left(x+2y\right)^2=y^2\left(x^2-3\right)\)

\(\Rightarrow x^2-3=n^2\)

\(\Leftrightarrow\left(x-n\right)\left(x+n\right)=3\)

19 tháng 5 2018

\(x^2y^2-x^2-7y^2=4xy\)

\(\Leftrightarrow x^2+4xy+4y^2=x^2y^2-3y^2\)

\(\Leftrightarrow\left(x+2y\right)^2=y^2\left(x^2-3\right)\)

\(\Leftrightarrow x^2-3=y^2\)

\(\Leftrightarrow x^2-y^2=3\Leftrightarrow\left(x+y\right)\left(x-y\right)=3\)

Từ đó suy ra phương trình có nghiệm duy nhất: \(\hept{\begin{cases}x=2\\y=1\end{cases}}\)(loại vì nếu thử lại VT = -7 , mà VP = 4xy=4.2.1 = 8 . VT không bằng VP nên phương trình vô nghiệm

2 tháng 10 2020

c) Đặt \(a=\sqrt{x-4},b=\sqrt{y-4}\)với \(a,b\ge0\)thì pt đã cho trở thành:

\(2\left(a^2+4\right)b+2\left(b^2+4\right)a=\left(a^2+4\right)\left(b^2+4\right)\). chia 2 vế cho \(\left(a^2+4\right)\left(b^2+4\right)\)thì pt trở thành : 

\(\frac{2b}{b^2+4}+\frac{2a}{a^2+4}=1\). Để ý rằng a=0 hoặc b=0 không thỏa mãn pt.

Xét \(a,b>0\). Theo BĐT  AM-GM ta có: \(b^2+4\ge2\sqrt{4b^2}=4b,a^2+4\ge4a\)

\(\Rightarrow VT\le\frac{2a}{4a}+\frac{2b}{4b}=1\), dấu đẳng thức xảy ra khi và chỉ khi \(\hept{\begin{cases}a^2=4\\b^2=4\end{cases}\Leftrightarrow a=b=2\Leftrightarrow x=y=8}\)

Vậy x=8,y=8 là nghiệm của pt

4 tháng 5 2018

\(PT\Leftrightarrow\left(x+y\right)\left(x+3y\right)-2\left(x+y\right)-5=0\)

\(\Leftrightarrow\left(x+y\right)\left(x+3y-2\right)=5\)

=> phương trình ước số

22 tháng 5 2017

tách như này nè

\(x^2+2y^2+3xy+3x+5y+2=17\)

5 tháng 2 2018

bn tham khảo câu này nha https://h.vn/hoi-dap/question/79049.html

chúc bn học tốt.tk mk nha