Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(PT\Leftrightarrow\left(x^2-4xy+4y^2\right)+4x-8y+4+y^2-16=0\)
\(\Leftrightarrow\left(x-2y\right)^2+4\left(x-2y\right)+4+y^2=16\)
\(\Leftrightarrow\left(x-2y+2\right)^2+y^2=16\)
Vì \(\left(x+2y+2\right)^2+y^2\) là tổng hai số chính phương
nên \(\left(\left(x+2y+2\right)^2;y^2\right)\in\left\{0;16\right\}\)xét 2 TH là ra
\(2x^2+5y^2-4xy-8y-4x+14=0\)
\(\Leftrightarrow\left(2x^2+2y^2-4xy\right)+3y^2-8y-4x+14=0\)
\(\Leftrightarrow2\left(x^2+y^2-2xy\right)-4\left(x-y\right)-12y+3y^2+14=0\)
\(\Leftrightarrow2\left[\left(x-y\right)^2-2\left(x-y\right)+1\right]+3y^2-12y+12\)
\(\Leftrightarrow2\left(x-y-1\right)^2+3\left(y-2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=3\end{matrix}\right.\)
\(x^2-4xy+5y^2=2\left(x-y\right)\)
\(\Leftrightarrow x^2-4xy+5y^2-2x+2y=0\)
\(\Leftrightarrow\left(x-2y\right)^2-2\left(x-2y\right)+1+y^2-2y+1=2\)
\(\Leftrightarrow\left(x-2y-1\right)^2+\left(y-1\right)^2=2\)
Vì x,y là số nguyên nên ta có các trường hợp:
TH1: \(\hept{\begin{cases}x-2y-1=1\\y-1=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=6\\y=2\end{cases}}\)
TH2: \(\hept{\begin{cases}x-2y-1=-1\\y-1=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=0\end{cases}}\)
TH3: \(\hept{\begin{cases}x-2y-1=-1\\y-1=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=4\\y=2\end{cases}}\)
TH4: \(\hept{\begin{cases}x-2y-1=1\\y-1=-1\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\y=0\end{cases}}\)
Vậy \(\left(x;y\right)\in\left\{\left(6;2\right),\left(0;0\right),\left(4;2\right),\left(2;0\right)\right\}\)
\(\)
\(x^2+y^2=2x^2y^2\)
\(\Rightarrow\frac{x^2+y^2}{x^2y^2}=2\)
\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}=2\left(1\right)\)
Do x,y bình đẳng như nhau,giả sử \(x\ge y\)
\(\Rightarrow x^2\ge y^2\)
Với x<1 thì VT của (1) âm mà vế phải dương.(Loại)
Với x=1 thì thỏa mãn
Với x>1 thì dễ thấy KTM
Vậy....
\(PT\Leftrightarrow\left(x+y\right)\left(x+3y\right)-2\left(x+y\right)-5=0\)
\(\Leftrightarrow\left(x+y\right)\left(x+3y-2\right)=5\)
=> phương trình ước số
Ta có:
\(x^2+5y^2-4xy+4x-8y-12=0\)
\(\Leftrightarrow x^2-4xy+4x+4y^2-8y+4+y^2-16=0\)
\(\Leftrightarrow\left[x^2-\left(4xy-4x\right)+\left(4y^2-8y+4\right)\right]+y^2=16\)
\(\Leftrightarrow\left[x^2-4x\left(y-1\right)+4\left(y-1\right)^2\right]+y^2=16\)
\(\Leftrightarrow\left(x-2y+2\right)^2+y^2=16\)
Do \(x,y\in Z\) => \(\left(x-2y+2\right)^2\) và \(y^2\) là 2 số chính phương.
Mà do tổng 2 số chính phương này là 16 => Một trong hai số chính phương là 16 và số còn lại là 0.
Ta có bảng sau:
Vậy các nghiệm nguyên của phương trình là:
\(\left(x;y\right)=\left(6;4\right);\left(-10;-4\right);\left(2;0\right);\left(-6;0\right)\)