K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2017

Các bạn giúp mình với mình cảm ơn rất nhiều

4 tháng 2 2020

tham khảo

Câu hỏi của Nguyễn Thị Quỳnh - Toán lớp 7 - Học toán với OnlineMath

n.(n+2).(n+7)

=n.n.(2+7)

=2n.9

Vì \(9⋮3\Rightarrow2n.9⋮3\)

CHÚC BẠN HỌC TỐT !!!

AH
Akai Haruma
Giáo viên
28 tháng 8 2017

Lời giải:

Xét \(n=3k\Rightarrow n(n+2)(n+7)=3k(n+2)(n+7)\vdots 3\)

Xét \(n=3k+1\Rightarrow n(n+2)(n+7)=n(3k+3)(n+7)=3n(k+1)(n+7)\vdots 3\)

Xét \(n=3k+2\Rightarrow n(n+2)(n+7)=n(n+2)(3k+9)=3n(n+2)(k+3)\vdots 3\)

Từ các TH trên ta suy ra \(n(n+2)(n+7)\vdots 3\) với mọi \(n\in\mathbb{N}\)

hình như câu 2 Nguyễn Hoài Linh copy

20 tháng 9 2024

Đây là toán nâng cao chuyên đề tính chất chia hết của một tổng, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau: 

                             Giải

Chứng minh bằng phương pháp phản chứng:

Giả sử A ⋮ 121 ∀ n khi đó ta có với n = k( k \(\in\)n) thì: 

A = k2 + 3k + 5 ⋮ 121 (luôn đúng \(\forall\) k \(\in\) N)

Với n = k + 1 thì

A = (k + 1)2 + 3(k + 1) + 5 ⋮ 121 (luôn đúng \(\forall\) k \(\in\) N) 

⇒ (k + 1).(k + 1) + 3k + 3 + 5⋮ 121

⇒ k2 + k + k + 1 + 3k + 3 + 5 ⋮ 121

⇒ (k2 + 3k + 5) + (k + k) + (1 + 3)⋮ 121

⇒ (k2 + 3k + 5) + 2k + 4 ⋮ 121

⇒ 2k + 4 ⋮ 121

⇒ 2.(k + 2) ⋮ 121

⇒ k + 2 ⋮ 121 (1)

Mà ta có: k2 + 3k + 5 ⋮ 121

               ⇒ k(k + 2) + (k + 2) + 3 ⋮ 121

              ⇒ (k + 2)(k + 1) + 3 ⋮ 121 (2)

Kết hợp (1) và (2) ta có: 3 ⋮ 121 (vô lý)

Vậy điều giả sử là sai hay 

A = n2 + 3n + 5 không chia hết cho 121 với mọi n (đpcm)

 

             

 

     

 

25 tháng 1 2021

Giả sử:,

+) nn chia 3 dư 1 thì n2 cũng chia 3 dư 1, khi đó n2−1 chia 3 dư 0 nên không là số nguyên tố.

+) nn chia 3 dư 2 thì n^2 cũng chia 3 dư 1, khi đó n2-1 chia 3 dư 0 nên không là số nguyên tố

Vậy ta có đpcm :)

18 tháng 8 2024

nó là thế, chứng minh làm cái đéo gì

24 tháng 11 2016

Vì n không chi hế cho 3 => n chia 3 dư 1 hoặc n chia 3 dư 2

=> n có dạng 3k + 1 hoặc 3k + 2 ( k thuộc N )

+) Với n = 3k + 1 => n2 = ( 3k + 1 )2 = (3k + 1)(3k + 1) = 9k2 + 6k + 1 = 3( 3k2 + 2k ) + 1

Vì 3( 3k2 + 2k ) chia hết cho 3 => 3( 3k2 + 2k ) + 1 chia 3 dư 1 ( 1 )

+) Với n = 3k + 2 => n2 = (3k + 2)2 = (3k + 2)( 3k + 2) = 9k2 + 12k + 4 = 3( 3k2 + 4k + 1 ) + 1

Vì 3( 3k2 + 4k + 1 ) chia hết cho 3 => 3( 3k2 + 4k + 1 ) + 1 chia 3 dư 1 ( 2 )

Từ (1) ; ( 2 ) => n2 chia 3 dư 1 ( đpcm )