Tìm tất cả các giá trị của m để pt \(8^{2x^2-2x-4}+m^2-m=0\) có nghiệm.
Mong m.n chỉ cho e cách giải.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm tất cả các giá trị của m để pt \(8^{2x^2-2x-4}+m^2-m=0\) có nghiệm.
Mong m.n chỉ cho e cách giải.
a, m\(x\) -2\(x\) + 3 = 0
Với m = -4 ta có :
-4\(x\) - 2\(x\) + 3 = 0
-6\(x\) + 3 = 0
6\(x\) = 3
\(x\) = 3 : 6
\(x\) = \(\dfrac{1}{2}\)
b, Vì \(x\) = 2 là nghiệm của phương trình nên thay \(x\) = 2 vào phương tình ta có : m.2 - 2.2 + 3 = 0
2m - 1 = 0
2m = 1
m = \(\dfrac{1}{2}\)
c, m\(x\) - 2\(x\) + 3 = 0
\(x\)( m -2) + 3 = 0
\(x\) = \(\dfrac{-3}{m-2}\)
Hệ có nghiệm duy nhất khi m - 2 # 0 => m#2
d, Để phương trình có nghiệm nguyên thì: -3 ⋮ m -2
m - 2 \(\in\) { - 3; -1; 1; 3}
m \(\in\) { -1; 1; 3; 5}
Câu a )
\(2x^4+3x^2-2=0\left(1\right)\)
Đặt \(t=x^2\left(t\ge0\right)\) phương trình (1) trở thành:
\(2t^2+3t-2=0\)
\(\Leftrightarrow t\left(2t-1\right)+4t-2=0\)
\(\Leftrightarrow t\left(2t-1\right)+2\left(2t-1\right)=0\)
\(\Leftrightarrow\left(2t-1\right)\left(t+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2t-1=0\\t+2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}t=\frac{1}{2}\\1=-2\left(loại\right)\end{cases}}\)
Với \(t=\frac{1}{2}\Leftrightarrow x^2=\frac{1}{2}\Rightarrow x=\pm\frac{\sqrt{2}}{2}\)
Vậy tập nghiệm của phương trình là \(S=\left\{\pm\frac{\sqrt{2}}{2}\right\}\)
Câu b )
\(\Delta=\left(m+1\right)^2-4m=m^2-2m+1=\left(m-1\right)^2\)
\(\Delta>0\Leftrightarrow\left(m-1\right)^2>0\Leftrightarrow m\ne1\)
\(\hept{\begin{cases}x_1+x_2=m+1\\x_1x_2=m\end{cases}}\)
\(x_1=3x_2\Rightarrow3x_2+x_2=m+1\Leftrightarrow4x_2=m+1\)
\(\Leftrightarrow x_2=\frac{m+1}{4}\Rightarrow x_1=\frac{3\left(m+1\right)}{4}\)
\(x_1x_2=m\Leftrightarrow\frac{3\left(m+1\right)^2}{16}=m\)
\(\Leftrightarrow3m^2+6m+3=16m\)
\(\Leftrightarrow3m^2-10m+3=0\)
\(\Leftrightarrow\left(3m-1\right)\left(m-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}m=\frac{1}{3}\\m=3\end{cases}\left(tm\right)}\)
Để phương trình có 2 nghiệm phân biệt :
\(\Delta>0< =>\left(-2\right)^2-4\left(-m\right)>0\)
\(< =>4+4m>0\)
\(< =>4m>-4\)
\(< =>m>-1\)
a)Với `m=2` ta có phương trình:
`x^2-7x+2.2+8=0`
`<=>x^2-7x+4+8=0`
`<=>x^2-7x+12=0`
`<=>x^2-3x-4x+12=0`
`<=>(x-3)(x-4)=0`
`<=>[(x=3),(x=4):}`
Vậy với `m=2` thì pt có 2 nghiệm phân biệt là 3 và 4.
`b)` Phương trình có 2 nghiệm `x_1,x_2`
`<=>\Delta>=0`
`<=>7^2-4(2m+8)>=0`
`<=>49-8m-32>=0`
`<=>17>=8m`
`<=>m<=17/8`
Vậy với `m<=17/8` thì pt có 2 nghiệm `x_1,x_2.`
Lời giải:
a. Khi $m=2$ thì pt trở thành:
$x^2-7x+12=0$
$\Leftrightarrow (x-3)(x-4)=0$
$\Leftrightarrow x-3=0$ hoặc $x-4=0$
$\Leftrightarrow x=3$ hoặc $x=4$
b.
Để pt có 2 nghiệm $x_1,x_2$ thì:
$\Delta=49-4(2m+8)\geq 0$
$\Leftrightarrow m\leq \frac{17}{8}$
a: Khi m=2 thì (1) trở thành \(x^2+2x-3=0\)
=>(x+3)(x-1)=0
=>x=-3 hoặc x=1
b: \(\text{Δ}=2^2-4\cdot\left(m-5\right)=4-4m+20=-4m+24\)
Để phương trình có hai nghiệm thì -4m+24>=0
=>-4m>=-24
hay m<=6
Theo đề, ta có: \(x_1x_2\left(x_1+x_2\right)=8\)
\(\Leftrightarrow-2\left(m-5\right)=8\)
=>m-5=-4
hay m=1(nhận)
b) \(\Delta=4-4\left(-m\right)=4+4m\). pt có nghiệm <=> \(\Delta\ge0\Leftrightarrow4+4m\ge0\Leftrightarrow m\ge-1\)
pt có nghiệm với mọi m>=-1 => áp dụng hệ thức vi ét ta có: \(x1+x2=-2\); \(x1.x2=-m\);
\(x1^4+x2^4=\left(x1+x2\right)^4-4x1^3x2-6x1^2x^2_2-4x1x2^3=16-2x1.x2\left(2x^2+3x1.x2+2x^2_2\right)\)
\(=16+2m\left[2\left(x1^2+2x1.x2+x2^2\right)-x1.x2\right]=16+2m\left[2\left(x1+x2\right)^2+m\right]=16+2m.4+2m^2=2m^2+8m+16\)
\(=2\left(m^2+4m+8\right)=2\left(m^2+4m+4+4\right)=2\left(m+2\right)^2+8\)
\(m\ge-1\Rightarrow m+2\ge1\Leftrightarrow2\left(m+2\right)^2+8\ge10\)=> Min P=10 <=> m=-1
Sao ở khúc 16 + 2m [2 (x1 + x2) ^ 2 + m] = 16 + 2*4 +2m vậy?
Thế `m=2` vào (1) \(\Leftrightarrow x^2-7x+12=0\)
\(\Delta=\left(-7\right)^2-4.1.12=1>0\)
`->` ptr có 2 nghiệm phân biệt
\(\left\{{}\begin{matrix}x=\dfrac{7+\sqrt{1}}{1}=4\\x=\dfrac{7-\sqrt{1}}{1}=3\end{matrix}\right.\)
Vậy \(S=\left\{3;4\right\}\)
b. \(\Delta=\left(-7\right)^2-4\left(2m+8\right)=49-8m-32=17-8m\)
Để ptr có 2 nghiệm \(\Leftrightarrow\Delta\ge0\)
\(\Leftrightarrow m\le\dfrac{17}{8}\)
Theo hệ thức Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=7\\x_1x_2=2m+8\end{matrix}\right.\)
Ta có: \(x_1^2+x_2^2=\left(x_1x_2-7\right)^2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=\left(x_1x_2-7\right)^2\)
\(\Leftrightarrow7^2-2\left(2m+8\right)=\left(2m+8-7\right)^2\)
\(\Leftrightarrow49-4m-16=4m^2+4m+1\)
\(\Leftrightarrow4m^2=32\)
\(\Leftrightarrow m^2=8\)
\(\Leftrightarrow\left[{}\begin{matrix}m=2\sqrt{2}\left(l\right)\\m=-2\sqrt{2}\left(n\right)\end{matrix}\right.\)
Vậy \(m=-2\sqrt{2}\) thỏa đề bài
xét \(A=2x^2-2x-4=2\left[\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{4}\right]\ge-\dfrac{9}{2}\)
\(\Rightarrow8^{2x^2-2x-4}\ge\dfrac{1}{\sqrt{8^9}}\)
Để phương trình: \(8^{2x^2-2x-4}+m^2-m=0\) có nghiệm
Cần \(m-m^2\ge\dfrac{1}{\sqrt{8^9}}\Leftrightarrow m^2-m+\dfrac{1}{\sqrt{.8^9}}\le0\)
\(\Rightarrow\dfrac{1-\sqrt{1-\dfrac{4}{\sqrt{8^9}}}}{2}\le m\le\dfrac{1+\sqrt{1-\dfrac{4}{\sqrt{8^9}}}}{2}\)
=>không có đáp án nào tuyệt đối chính xác.
chọn phương B gần đúng nhất nhưng vẫn chưa đúng:
do \(\left\{{}\begin{matrix}\dfrac{1+\sqrt{1-\dfrac{4}{\sqrt{8^9}}}}{2}< 1\\\dfrac{1-\sqrt{1-\dfrac{4}{\sqrt{8^9}}}}{2}>0\end{matrix}\right.\).
C