K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2023

a)Với `m=2` ta có phương trình:

`x^2-7x+2.2+8=0`

`<=>x^2-7x+4+8=0`

`<=>x^2-7x+12=0`

`<=>x^2-3x-4x+12=0`

`<=>(x-3)(x-4)=0`

`<=>[(x=3),(x=4):}`

Vậy với `m=2` thì pt có 2 nghiệm phân biệt là 3 và 4.

`b)` Phương trình có 2 nghiệm `x_1,x_2`

`<=>\Delta>=0`

`<=>7^2-4(2m+8)>=0`

`<=>49-8m-32>=0`

`<=>17>=8m`

`<=>m<=17/8`

Vậy với `m<=17/8` thì pt có 2 nghiệm `x_1,x_2.`

AH
Akai Haruma
Giáo viên
4 tháng 3 2023

Lời giải:
a. Khi $m=2$ thì pt trở thành:
$x^2-7x+12=0$

$\Leftrightarrow (x-3)(x-4)=0$

$\Leftrightarrow x-3=0$ hoặc $x-4=0$

$\Leftrightarrow x=3$ hoặc $x=4$

b.

Để pt có 2 nghiệm $x_1,x_2$ thì:
$\Delta=49-4(2m+8)\geq 0$

$\Leftrightarrow m\leq \frac{17}{8}$

5 tháng 3 2023

Thế `m=2` vào (1) \(\Leftrightarrow x^2-7x+12=0\)

\(\Delta=\left(-7\right)^2-4.1.12=1>0\)

`->` ptr có 2 nghiệm phân biệt

\(\left\{{}\begin{matrix}x=\dfrac{7+\sqrt{1}}{1}=4\\x=\dfrac{7-\sqrt{1}}{1}=3\end{matrix}\right.\)

Vậy \(S=\left\{3;4\right\}\)

b. \(\Delta=\left(-7\right)^2-4\left(2m+8\right)=49-8m-32=17-8m\)

Để ptr có 2 nghiệm  \(\Leftrightarrow\Delta\ge0\)

                                 \(\Leftrightarrow m\le\dfrac{17}{8}\)

Theo hệ thức Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=7\\x_1x_2=2m+8\end{matrix}\right.\)

Ta có: \(x_1^2+x_2^2=\left(x_1x_2-7\right)^2\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=\left(x_1x_2-7\right)^2\)

\(\Leftrightarrow7^2-2\left(2m+8\right)=\left(2m+8-7\right)^2\)

\(\Leftrightarrow49-4m-16=4m^2+4m+1\)

\(\Leftrightarrow4m^2=32\)

\(\Leftrightarrow m^2=8\)

\(\Leftrightarrow\left[{}\begin{matrix}m=2\sqrt{2}\left(l\right)\\m=-2\sqrt{2}\left(n\right)\end{matrix}\right.\)

Vậy \(m=-2\sqrt{2}\) thỏa đề bài

                                 

 

5 tháng 3 2023

Xem lại câu a

chỗ 

\(\dfrac{7-\sqrt{1}}{1}=6\) nha  

a: Khi m=2 thì (1) trở thành \(x^2+2x-3=0\)

=>(x+3)(x-1)=0

=>x=-3 hoặc x=1

b: \(\text{Δ}=2^2-4\cdot\left(m-5\right)=4-4m+20=-4m+24\)

Để phương trình có hai nghiệm thì -4m+24>=0

=>-4m>=-24

hay m<=6

Theo đề, ta có: \(x_1x_2\left(x_1+x_2\right)=8\)

\(\Leftrightarrow-2\left(m-5\right)=8\)

=>m-5=-4

hay m=1(nhận)

7 tháng 6 2021

PT có 2 nghiệm phân biệt

`<=>(4m+3)^2-8(2m^2-1)>0`

`<=>16m^2+24m+9-16m^2+8>0`

`<=>24m+17>0`

`<=>24m> -17`

`<=>m>(-17)/24`

PT có 1 nghiệm =1 thì ta thay x=1 thì pt =

`=>2.1-(4m+3).1+2m^2-1=0`

`<=>2m^2-1-(4m+3)+2=0`

`<=>2m^2+1-4m-3=0`

`<=>2m^2-4m-2=0`

`<=>m^2-2m-1=0`

`a=1,b=-2,c=-1`

`Delta'=1+1=2`

`=>x_1=1+sqrt2(tm),1-sqrt2(tm)`

Vậy `m=1+-sqrt2` thì PT có 2 nghiệm phân biệt có 1 nghiệm = 1

7 tháng 6 2021

PT có 1 nghiệm là `1 <=> 2-(4m+3)+2m^2-1=0`

`<=> 2m^2-4m-2=0`

`<=>m=1 \pm \sqrt2`.

22 tháng 3 2022

a.Bạn thế vào nhé

b.\(\Delta=3^2-4m=9-4m\)

Để pt vô nghiệm thì \(\Delta< 0\)

\(\Leftrightarrow9-4m< 0\Leftrightarrow m>\dfrac{9}{4}\)

c.Ta có: \(x_1=-1\)

\(\Rightarrow x_2=-\dfrac{c}{a}=-m\)

d.Theo hệ thức Vi-ét, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1.x_2=m\end{matrix}\right.\)

1/ \(x_1^2+x_2^2=34\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=34\)

\(\Leftrightarrow\left(-3\right)^2-2m=34\)

\(\Leftrightarrow m=-12,5\)

..... ( Các bài kia tương tự bạn nhé )

\(a,m=1\Rightarrow x^2+x-1=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-1+\sqrt{5}}{2}\\x=\dfrac{-1-\sqrt{5}}{2}\end{matrix}\right.\\ b,\Delta=\left(2m-1\right)^2+4m=\left(2m\right)^2-4m+1+4m\\ =4m^2+1>0\forall m\)  

--> Phương trình luôn có 2 nghiệm phân biệt

--> Không có giá trị m để pt vô nghiệm

4 tháng 2 2022

a, Thay m = 1 vào pt trên ta được 

\(x^2+x-1=0\)

\(\Delta=1-4\left(-1\right)=1+5>0\)

Vậy pt luôn có 2 nghiệm pb 

\(x_1=\dfrac{-1-\sqrt{6}}{2};x_2=\dfrac{-1+\sqrt{6}}{2}\)

b, Ta có : \(\Delta=\left(2m-1\right)^2-4\left(-m\right)=4m^2+1< 0\)( vô lí )

Do \(4m^2\ge0\forall m\Rightarrow4m^2+1>0\forall m\)

hay ko có gtri nào của m để pt vô nghiệm 

\(x^2-2\left(m-1\right)x-2m=0\)

\(\text{Δ}=\left(-2m+2\right)^2-4\cdot1\cdot\left(-2m\right)\)

\(=4m^2-8m+4+8m=4m^2+4>=4>0\forall m\)

=>Phương trình luôn có hai nghiệm phân biệt

 

10 tháng 5 2022

`1)`

$a\big)\Delta=7^2-5.4.1=29>0\to$ PT có 2 nghiệm pb

$b\big)$

Theo Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{7}{5}\\x_1x_2=\dfrac{1}{5}\end{matrix}\right.\)

\(A=\left(x_1-\dfrac{7}{5}\right)x_1+\dfrac{1}{25x_2^2}+x_2^2\\ \Rightarrow A=\left(x_1-x_1-x_2\right)x_1+\left(\dfrac{1}{5}\right)^2\cdot\dfrac{1}{x_2^2}+x_2^2\\ \Rightarrow A=-x_1x_2+\left(x_1x_2\right)^2\cdot\dfrac{1}{x_2^2}+x_2^2\)

\(\Rightarrow A=-x_1x_2+x_1^2+x_2^2\\ \Rightarrow A=\left(x_1+x_2\right)^2-3x_1x_2\\ \Rightarrow A=\left(\dfrac{7}{5}\right)^2-3\cdot\dfrac{1}{5}=\dfrac{34}{25}\)

a: \(\text{Δ}=\left(2m-1\right)^2-4\left(m-1\right)\)

\(=4m^2-4m+1-4m+4=4m^2-8m+5\)

\(=\left(4m^2-8m+4\right)+5=4\left(m-1\right)^2+5>0\)

=>Phương trình luôn có hai nghiệm phân biệt

b: Để phương trình có hai nghiệm trái dấu thì m-1<0

hay m<1