Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

âu này làm như bt thôi
tthay nghiệm vào rồi tìm m
sau đó thay m vào tìm o còn lại
b, tìm đenta
=> đenta >=0
=> theo hệ thức viet
=> thay vào ot cần tìm m
hok tốt
mik nha

1. Từ đề bài suy ra (x^2 -7x+6)=0 hoặc x-5=0
Nếu x-5=0 suy ra x=5
Nếu x^2-7x+6=0 suy ra x^2-6x-(x-6)=0
Suy ra x(x-6)-(x-6)=0 suy ra (x-1)(x-6)=0
Suy ra x=1 hoặc x=6.
bài 1 ; \(\left(x^2-7x+6\right)\sqrt{x-5}=0\)
\(< =>\orbr{\begin{cases}x^2-7x+6=0\left(+\right)\\\sqrt{x-5}=0\left(++\right)\end{cases}}\)
\(\left(+\right)\)ta dễ dàng nhận thấy \(1-7+6=0\)
thì phương trình sẽ có nghiệm là \(\orbr{\begin{cases}x=1\\x=\frac{c}{a}=6\end{cases}}\)
\(\left(++\right)< =>x-5=0< =>x=5\)
Vậy tập nghiệm của phương trình trên là \(\left\{1;5;6\right\}\)

a
Xét \(\Delta'=m^2-m+2=m^2-m+\frac{1}{4}+\frac{7}{4}=\left(m-\frac{1}{2}\right)^2+\frac{7}{4}>0\)
=> pt có 2 nghiệm phân biệt với mọi giá trị m
b
Do phương trình có 2 nghiệm phân biệt nên theo Viete ta có:\(x_1+x_2=2m;x_1x_2=-2\)
Khi đó:\(x_1^2+x_2^2-x_1^2x_2^2-1\)
\(=\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1x_2\right)^2-1\)
\(=4m^2+4-4-1=4m^2-1\ge-1\)
Dấu "=" xảy ra tại m=0
Vậy............................................................
Ta có: \(\Delta=\left(2m-1\right)^2+7>0\forall x\)
Nên pt (1) có 2 nghiệm phân biệt với mọi m
Theo hệ thức Vi-et ta có:
\(x_1+x_2=2m,x_1\cdot x_2=m-2\)
\(B=x_1^2+x_2^2-x_1^2\cdot x_2^2-1=\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1x_2\right)^2-1\)
Thay Vi-et và biến đổi ta có: \(B=\left(m+\frac{1}{3}\right)^2-\frac{4}{3}\ge\frac{-4}{3}\forall m\)
Xét dấu "=" xảy ra và kết luận

1) a/ để pt có 2 nghiệm pb <=> đen ta phẩy > 0
<=> (m-1)2 - 1.m2 >0
<=> m2-2m+1-m2 >0
<=> -2m+1 >0 .
<=> -2m > -1
<=> m < 1/2
vậy khi m < 1/2 thì pt có 2 nghiệm pb
2) để pt có 2 nghiệm <=> đen ta >= 0
<=> (-2)2 - m >= 0
<=> 4-m >= 0
<=> m <= 4
theo vi-et ta có:
x1+x2= 4
x1.x2= m
theo đầu bài ta có:
x12 + x22 = 10
<=> x12+2x1x2+x22 -2x1x2=10
<=> (x1+x2)2-2x1x2=10
<=> 42-2m = 10
<=> 2m =6
<=> m=3
vậy khi m = 3 thì pt có 2 nghiệm thỏa mãn x12+ x22=10

a, Với \(m=\sqrt{2}\) thì pt trở thành
\(x^2-2x-2\sqrt{2}+1=0\)
Ta có \(\Delta'=1+2\sqrt{2}-1=2\sqrt{2}>0\)
Nên pt có 2 nghiệm phân biệt
\(\orbr{\begin{cases}x=1-\sqrt{2\sqrt{2}}\\x=1+\sqrt{2\sqrt{2}}\end{cases}}\)
b, Ta có \(\Delta'=1+2m-1=2m\)
Để pt có nghiệm thì \(\Delta'\ge0\Leftrightarrow m\ge0\)
Theo hệ thức Vi-ét \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=-2m+1\end{cases}}\)
Ta có \(x_2^2\left(x_1^2-1\right)+x_1^2\left(x_2^2-1\right)=8\)
\(\Leftrightarrow\left(x_1x_2\right)^2-x_2^2+\left(x_1x_2\right)^2-x_1^2=8\)
\(\Leftrightarrow2\left(x_1x_2\right)^2-\left(x_1+x_2\right)^2+2x_1x_2=8\)
\(\Leftrightarrow2\left(-2m+1\right)^2-2^2+2\left(-2m+1\right)=8\)
\(\Leftrightarrow2\left(4m^2-4m+1\right)-4-4m+2=8\)
\(\Leftrightarrow8m^2-8m+2-4m-10=0\)
\(\Leftrightarrow8m^2-12m-8=0\)
\(\Leftrightarrow2m^2-3m-2=0\)
\(\Leftrightarrow\left(m-2\right)\left(2m+1\right)=0\)
\(\Leftrightarrow m=2\left(Do\cdot m>0\right)\)
Thế `m=2` vào (1) \(\Leftrightarrow x^2-7x+12=0\)
\(\Delta=\left(-7\right)^2-4.1.12=1>0\)
`->` ptr có 2 nghiệm phân biệt
\(\left\{{}\begin{matrix}x=\dfrac{7+\sqrt{1}}{1}=4\\x=\dfrac{7-\sqrt{1}}{1}=3\end{matrix}\right.\)
Vậy \(S=\left\{3;4\right\}\)
b. \(\Delta=\left(-7\right)^2-4\left(2m+8\right)=49-8m-32=17-8m\)
Để ptr có 2 nghiệm \(\Leftrightarrow\Delta\ge0\)
\(\Leftrightarrow m\le\dfrac{17}{8}\)
Theo hệ thức Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=7\\x_1x_2=2m+8\end{matrix}\right.\)
Ta có: \(x_1^2+x_2^2=\left(x_1x_2-7\right)^2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=\left(x_1x_2-7\right)^2\)
\(\Leftrightarrow7^2-2\left(2m+8\right)=\left(2m+8-7\right)^2\)
\(\Leftrightarrow49-4m-16=4m^2+4m+1\)
\(\Leftrightarrow4m^2=32\)
\(\Leftrightarrow m^2=8\)
\(\Leftrightarrow\left[{}\begin{matrix}m=2\sqrt{2}\left(l\right)\\m=-2\sqrt{2}\left(n\right)\end{matrix}\right.\)
Vậy \(m=-2\sqrt{2}\) thỏa đề bài
Xem lại câu a
chỗ
\(\dfrac{7-\sqrt{1}}{1}=6\) nha