tìm GTNN biết:
K=\(\left|3+x^2\right|+27,7\)
làm chi tiết hô mik nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\dfrac{11}{4}:\dfrac{33}{16}-0,5+\left(\dfrac{14}{5}-3\right)^2\\ =\dfrac{11}{4}\cdot\dfrac{16}{33}-\dfrac{1}{2}+\left(-\dfrac{1}{5}\right)^2\\ =\dfrac{4}{3}-\dfrac{1}{2}+\dfrac{1}{25}=\dfrac{131}{150}\)
Để olm.vn giúp em nhá:
(\(x-5\))2002 + (2\(x\) + 1)2000 = 0
vì (\(x\) - )2022 ≥ 0 ∀ \(x\)
(2\(x\) + 1)2000 \(\ge\) 0 ∀ \(x\)
⇒ (\(x\) - 5)2002 + (2\(x\) + 1)2000 = 0
⇔ \(\left\{{}\begin{matrix}\left(x-5\right)^{2002}=0\\\left(2x+1\right)^{2000}=0\end{matrix}\right.\)
\(\Rightarrow\) \(\left\{{}\begin{matrix}x-5=0\\2x+1=0\end{matrix}\right.\)
\(\Rightarrow\) \(\left\{{}\begin{matrix}x=5\\2x=-1\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=5\\x=-\dfrac{1}{2}\end{matrix}\right.\)
vì - \(\dfrac{1}{2}\) \(\ne\) 5 vậy \(x\in\) \(\varnothing\)
\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{1}{x.\left(2x+1\right)}=\dfrac{1}{10}\)
\(\Leftrightarrow\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{2x.\left(2x+1\right)}=\dfrac{1}{20}\)
\(\Leftrightarrow\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{2x.\left(2x+1\right)}=\dfrac{1}{20}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{2x}-\dfrac{1}{2x+1}=\dfrac{1}{20}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{2x+1}=\dfrac{1}{20}\)
\(\Leftrightarrow\dfrac{1}{2x+1}=\dfrac{9}{20}\)
\(\Leftrightarrow2x+1=\dfrac{20}{9}\Leftrightarrow x=\dfrac{11}{18}\)
Em giải như XYZ olm em nhé
Sau đó em thêm vào lập luận sau:
\(x\) = \(\dfrac{11}{18}\)
Vì \(\in\) N*
Vậy \(x\in\) \(\varnothing\)
\(\dfrac{1}{15}\) + \(\dfrac{1}{21}\) + \(\dfrac{1}{28}\) + \(\dfrac{1}{36}\) +...+ \(\dfrac{2}{x\left(x+1\right)}\) = \(\dfrac{11}{40}\) (\(x\in\) N*)
\(\dfrac{1}{2}\).(\(\dfrac{1}{15}\)+\(\dfrac{1}{21}\)+\(\dfrac{1}{28}\)+\(\dfrac{1}{36}\)+.....+ \(\dfrac{2}{x\left(x+1\right)}\)) = \(\dfrac{11}{40}\) \(\times\) \(\dfrac{1}{2}\)
\(\dfrac{1}{30}\) + \(\dfrac{1}{42}\) + \(\dfrac{1}{56}\) + \(\dfrac{1}{72}\)+...+ \(\dfrac{1}{x\left(x+1\right)}\) = \(\dfrac{11}{80}\)
\(\dfrac{1}{5.6}\) + \(\dfrac{1}{6.7}\) + \(\dfrac{1}{7.8}\)+...+ \(\dfrac{1}{x\left(x+1\right)}\) = \(\dfrac{11}{80}\)
\(\dfrac{1}{5}\) - \(\dfrac{1}{6}\) + \(\dfrac{1}{6}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{8}\) + \(\dfrac{1}{8}\)-\(\dfrac{1}{9}\)+...+ \(\dfrac{1}{x}\)-\(\dfrac{1}{x+1}\) = \(\dfrac{11}{80}\)
\(\dfrac{1}{5}\) - \(\dfrac{1}{x+1}\) = \(\dfrac{11}{80}\)
\(\dfrac{1}{x+1}\) = \(\dfrac{1}{5}\) - \(\dfrac{11}{80}\)
\(\dfrac{1}{x+1}\) = \(\dfrac{1}{16}\)
\(x\) + 1 = 16
\(x\) = 16 - 1
\(x\) = 15
\(=4.\left(-\dfrac{1}{8}\right)-2.\dfrac{1}{4}-\dfrac{3}{2}+1=\)
\(=-\dfrac{1}{2}-\dfrac{1}{2}-\dfrac{3}{2}+1=-\dfrac{3}{2}\)
= 4 . -1/8 - 2 . -1/4 + 3 . -1/2 + 1
= -1/2 - -1/2 + -3/2 + 1
= -1/2
\(2-\left(5\frac{3}{8}+x-7\frac{5}{24}\right)\)\(:16\frac{2}{3}=0\)
\(\Rightarrow\)\(2-\left(5\frac{3}{8}+x-7\frac{5}{24}\right)=0\)
\(\Rightarrow\)\(5\frac{3}{8}+x-7\frac{5}{24}=2\)
\(\Rightarrow5\frac{3}{8}+x=9\frac{5}{24}\)
\(\Rightarrow x=3\frac{5}{6}\)
( Cách làm thì đúng rồi nhưng đáp án tớ ko chắc chắn )
ta có : \(a^2=b^3\) chỉ có nghiệm a=b={0,1}
\(\left\{\begin{matrix}10x+y=0\\x+y=0\end{matrix}\right.\Rightarrow x=y=0\)
\(\left\{\begin{matrix}10x+y=+-1\\x+y=1\end{matrix}\right.\Rightarrow x=0;y=1}\)
Có: \(\left\{{}\begin{matrix}\left|x-3\right|\ge0\forall x\\\left|y-1\right|\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\left|x-3\right|+\left|y-1\right|\ge0\forall x;y\)
Mà: \(\left|x-3\right|+\left|y-1\right|=0\)
nên: \(\left\{{}\begin{matrix}x-3=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)
a) Ta có: x2\(\ge0,\forall x\)
=> x2 +3/4 \(\ge\dfrac{3}{4}\) , mọi x
Vậy min A = 3/4
Dấu "=" xảy ra <=> x =0
b) ( x- 3/2)2 -0,4
Ta có ( x-3/2)2 lớn hơn hoặc bằng 0, mọi x
=> ( x-3/2)2 - 0,4 lớn hơn hoặc bằng 0 - 0;4 = -0,4
Vậy min B =-0,4
Dấu "=" xảy ra <=> x = 3/2
Chúc bạn học tốt !
\(\left(x+\frac{1}{2}\right)\left(x-\frac{3}{4}\right)=0\)
\(\Rightarrow\hept{\begin{cases}x+\frac{1}{2}=0\\x-\frac{3}{4}=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\x=\frac{3}{4}\end{cases}}\)
\(x^2\ge0\forall x\in R\Rightarrow|3+x^2|\ge3\forall x\in R.\)
\(\Rightarrow K\ge3+27,7=30,7.\)
Dấu "=" xảy ra <=> x=0