Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x+1)^2>=0 và (y-1)^2>=0
=>C>=-10
Dấu = xảy ra khi x+1=0,y-1=0
=>x=-1,y=1
Vậy C=-10 khi x=-1,y=1
k cho mk nha
a, => |5/3.x| = 1/6
=> 5/3.x = -1/6 hoặc 5/3.x = 1/6
=> x = -1/10 hoặc x = 1/10
Tk mk nha
P = x3 - 6x2 + 12x -8 + 6(x2 - 2x + 1 ) - (x3 + 1 )
= x3 - 6x2 + 12x -8 + 6x2 - 12x + 6 - x3 - 1
= -3
\(\Rightarrow\)P ko phụ thuộc vào giá trị của x
#mã mã#
a. ta có :
\(\hept{\begin{cases}\left|x-1\right|+\left|x-4\right|\ge\left|x-1-x+4\right|=3\\\left|x-2\right|+\left|x-3\right|\ge\left|x-2-x+3\right|=1\\\left|2x-5\right|\ge0\end{cases}}\)
Vậy phương trình ban đầu có nghiệm \(\Rightarrow2x-5=0\Leftrightarrow x=\frac{5}{2}\)thay lại thấy thỏa mãn . Vậy x=5/2 là nghiệm
b.ta có
\(\hept{\begin{cases}\left|x+1\right|+\left|x-1\right|\ge\left|x+1-x+1\right|=2\\\left|x+2\right|+\left|x-5\right|\ge\left|x+2-x+5\right|=7\\\left|3x+2\right|\ge0\end{cases}}\)
Vậy phương trình ban đầu có nghiệm \(\Rightarrow3x+2=0\Leftrightarrow x=-\frac{2}{3}\)thay lại thấy thỏa mãn . Vậy x=-2/3 là nghiệm
a) \(\frac{2}{3}-\frac{1}{3}\left(x-\frac{3}{2}\right)-\frac{1}{2}\left(2x+1\right)=5\)\(5\)
=> \(\frac{2}{3}-\left(\frac{1}{3}x-\frac{1}{2}\right)-\left(x+\frac{1}{2}\right)=5\)
=>\(\frac{2}{3}-\frac{1}{3}x+\frac{1}{2}-x-\frac{1}{2}=5\)
=>\(\left(\frac{2}{3}+\frac{1}{2}-\frac{1}{2}\right)-\left(\frac{1}{3}x+x\right)=5\)
=>\(\frac{2}{3}-\frac{4}{3}x=5\)
=>\(\frac{4}{3}x=\frac{2}{3}-5=-\frac{13}{3}\)
=>\(x=-\frac{13}{3}:\frac{4}{3}=-\frac{13}{4}\)
b)\(4x-\left(x+\frac{1}{2}\right)=2x-\left(\frac{1}{2}-5\right)\)
=>\(4x-x-\frac{1}{2}=2x-\left(-\frac{9}{2}\right)\)
=> \(3x-\frac{1}{2}=2x-\left(-\frac{9}{2}\right)\)
=>\(x=-\left(-\frac{9}{2}\right)+\frac{1}{2}=5\)
Để olm.vn giúp em nhá:
(\(x-5\))2002 + (2\(x\) + 1)2000 = 0
vì (\(x\) - )2022 ≥ 0 ∀ \(x\)
(2\(x\) + 1)2000 \(\ge\) 0 ∀ \(x\)
⇒ (\(x\) - 5)2002 + (2\(x\) + 1)2000 = 0
⇔ \(\left\{{}\begin{matrix}\left(x-5\right)^{2002}=0\\\left(2x+1\right)^{2000}=0\end{matrix}\right.\)
\(\Rightarrow\) \(\left\{{}\begin{matrix}x-5=0\\2x+1=0\end{matrix}\right.\)
\(\Rightarrow\) \(\left\{{}\begin{matrix}x=5\\2x=-1\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=5\\x=-\dfrac{1}{2}\end{matrix}\right.\)
vì - \(\dfrac{1}{2}\) \(\ne\) 5 vậy \(x\in\) \(\varnothing\)
Không thể tìm ''x'' trong bài này.