Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
e)\(16\dfrac{2}{7}:\left(-\dfrac{3}{5}\right)+28\dfrac{2}{7}:\left(-\dfrac{3}{5}\right)\)
=\(\left(16\dfrac{2}{7}+28\dfrac{2}{7}\right):\left(-\dfrac{3}{5}\right)\)
=\(\dfrac{312}{7}\)\(:\left(-\dfrac{3}{5}\right)\)
=\(-\dfrac{516}{7}\)
a)\(\dfrac{7}{8}.\left(\dfrac{2}{12}+\dfrac{4}{10}\right)\)
=\(\dfrac{7}{8}.\left(\dfrac{1}{6}+\dfrac{2}{5}\right)\)
=\(\dfrac{7}{8}.\)\(\dfrac{17}{30}\)
=\(\dfrac{119}{240}\)
a: \(=7\cdot\dfrac{6}{7}-5+\dfrac{3\sqrt{2}}{2}=1+\dfrac{3}{2}\sqrt{2}\)
b: \(=-\dfrac{8}{7}-\dfrac{3}{5}\cdot\dfrac{5}{8}+\dfrac{1}{2}=\dfrac{-16+7}{14}-\dfrac{3}{8}=\dfrac{-9}{14}-\dfrac{3}{8}\)
\(=\dfrac{-72-42}{112}=\dfrac{-114}{112}=-\dfrac{57}{56}\)
c: \(=20\sqrt{5}-\dfrac{1}{4}\cdot\dfrac{4}{3}+\dfrac{3}{2}=20\sqrt{5}+\dfrac{3}{2}-\dfrac{1}{3}=20\sqrt{5}+\dfrac{7}{6}\)
a)
\(3(2x-\frac{1}{2})+2(\frac{3}{8}-x)=2,75\)
\(\Leftrightarrow 6x-\frac{3}{2}+\frac{3}{4}-2x=2,75\)
\(\Leftrightarrow 4x=\frac{7}{2}\Rightarrow x=\frac{7}{8}\)
b)
\(x-\frac{1}{3}(5-3x)=1\frac{1}{2}x+5\frac{1}{2}\)
\(\Leftrightarrow x-\frac{5}{3}+x=x+\frac{1}{2}x+\frac{11}{2}\)
\(\Leftrightarrow \frac{1}{2}x=\frac{43}{6}\) \(\Rightarrow x=\frac{43}{3}\)
c) \(\sqrt{x-1}=4\Rightarrow x-1=4^2\Rightarrow x=4^2+1=17\)
d)
\(|x|-5\frac{3}{7}|-x|-\frac{3}{4}=2|x|-1\frac{1}{7}\)
\(\Leftrightarrow |x|-\frac{38}{7}|x|-\frac{3}{4}=2|x|-\frac{8}{7}\)
\(\Leftrightarrow |x|(1-\frac{38}{7}-2)=\frac{3}{4}-\frac{8}{7}\)
\(\Leftrightarrow |x|.\frac{-45}{7}=\frac{-11}{28}\)
\(\Leftrightarrow |x|=\frac{11}{180}\Rightarrow \left[\begin{matrix} x=\frac{11}{180}\\ x=-\frac{11}{180}\end{matrix}\right.\)
B = .................
Xét thừa số 63.1,2 - 21.3,6 = 0 nên B = 0
\(C=\left|\dfrac{4}{9}-\left(\dfrac{\sqrt{2}}{2}\right)^2\right|+\left|0,4+\dfrac{\dfrac{1}{3}-\dfrac{2}{5}-\dfrac{3}{7}}{\dfrac{2}{3}-\dfrac{4}{5}-\dfrac{6}{7}}\right|\)
\(C=\left|\dfrac{4}{9}-\dfrac{1}{2}\right|+\left|0,4+\dfrac{\dfrac{1}{3}-\dfrac{2}{5}-\dfrac{3}{7}}{2\left(\dfrac{1}{3}-\dfrac{2}{5}-\dfrac{3}{7}\right)}\right|\)
\(C=\left|\dfrac{4}{9}-\dfrac{1}{2}\right|+\left|0,4+\dfrac{1}{2}\right|=\dfrac{1}{18}+\dfrac{9}{10}=\dfrac{43}{45}\)
Mình làm câu 1,2 trước, câu 3 sau
Câu 1:
\(\sqrt{x^2}=0\)
=> \(\left(\sqrt{x^2}\right)^2=0^2\)
\(\Leftrightarrow x^2=0\Leftrightarrow x=0\)
Câu 2:
\(A=\left(0,75-0,6+\dfrac{3}{7}+\dfrac{3}{12}\right)\left(\dfrac{11}{7}+\dfrac{11}{3}+2,75-2,2\right)\)
\(A=\left(\dfrac{3}{4}-\dfrac{3}{5}+\dfrac{3}{7}+\dfrac{3}{13}\right)\left(\dfrac{11}{7}+\dfrac{11}{3}+\dfrac{11}{4}-\dfrac{11}{5}\right)\)
\(A=3\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{13}\right)\cdot11\left(\dfrac{1}{7}+\dfrac{1}{3}+\dfrac{11}{4}-\dfrac{11}{5}\right)\)
\(A=33\cdot\dfrac{491}{1820}\cdot\dfrac{221}{420}=\dfrac{3580863}{764400}\)
a)\(\dfrac{7}{8}.\left(\dfrac{2}{12}+\dfrac{4}{10}\right)=\dfrac{7}{8}.\left(\dfrac{10}{60}+\dfrac{24}{60}\right)=\dfrac{7}{8}.\dfrac{17}{30}=\dfrac{114}{240}\)
b)\(\dfrac{3}{2}-\dfrac{5}{6}\left(\dfrac{1}{2}\right)^2+\sqrt{4}=\dfrac{3}{2}-\dfrac{5}{6}.\dfrac{1}{4}+2=\dfrac{3}{2}-\dfrac{5}{24}+2=\dfrac{36}{24}-\dfrac{5}{24}+\dfrac{48}{24}=\dfrac{79}{24}\)c)\(\dfrac{15}{34}+\dfrac{7}{21}+\dfrac{19}{34}-1\dfrac{15}{17}+\dfrac{2}{3}=\left(\dfrac{15}{34}+\dfrac{19}{34}\right)+\left(\dfrac{7}{21}+\dfrac{2}{3}\right)-1\dfrac{15}{17}=1+\left(\dfrac{7}{21}+\dfrac{14}{21}\right)-\dfrac{32}{17}=1+1-\dfrac{32}{17}=2-\dfrac{32}{17}=\dfrac{34}{17}-\dfrac{32}{17}=\dfrac{2}{17}\)d)\(\left(-2\right)^3.\left(\dfrac{3}{4}-0,25\right):\left(2\dfrac{1}{4}-1\dfrac{1}{6}\right)=-8.\left(\dfrac{3}{4}-\dfrac{1}{4}\right):\left(\dfrac{9}{4}-\dfrac{7}{6}\right)=-8.\dfrac{2}{4}:\left(\dfrac{54}{24}-\dfrac{28}{24}\right)=-8.\dfrac{2}{4}:\dfrac{13}{12}=-4.\dfrac{12}{13}=\dfrac{-48}{13}\)e)\(16\dfrac{2}{7}:\left(-\dfrac{3}{5}\right)+28\dfrac{2}{7}:\left(-\dfrac{3}{5}\right)=16\dfrac{2}{7}.\left(-\dfrac{5}{3}\right)+28\dfrac{2}{7}.\left(-\dfrac{5}{3}\right)=\left(16\dfrac{2}{7}+28\dfrac{2}{7}\right).\left(-\dfrac{5}{3}\right)=\left(\dfrac{120}{7}+\dfrac{196}{7}\right).\left(-\dfrac{5}{3}\right)=\dfrac{316}{7}.\left(-\dfrac{5}{3}\right)=-\dfrac{1580}{21}\)
b, \(\dfrac{3}{\left(x+2\right)\left(x+5\right)}+\dfrac{5}{\left(x+5\right)\left(x+10\right)}+\dfrac{7}{\left(x+10\right)\left(x+17\right)}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Rightarrow\dfrac{1}{x+2}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+10}+\dfrac{1}{x+10}-\dfrac{1}{x+17}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Rightarrow\dfrac{1}{x+2}-\dfrac{1}{x+17}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Rightarrow\dfrac{x+17-x+2}{\left(x+2\right)\left(x+17\right)}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Rightarrow x=19\)
Chúc bạn học tốt!!!
a, \(\dfrac{x+1}{5}+\dfrac{x+3}{4}=\dfrac{x+5}{3}+\dfrac{x+7}{2}\)
\(\Rightarrow\dfrac{x+1}{5}+2+\dfrac{x+3}{4}+2=\dfrac{x+5}{3}+2+\dfrac{x+7}{2}+2\)
\(\Rightarrow\dfrac{x+11}{5}+\dfrac{x+11}{4}-\dfrac{x+11}{3}-\dfrac{x+11}{2}=0\)
\(\Rightarrow\left(x+11\right)\left(\dfrac{1}{5}+\dfrac{1}{4}-\dfrac{1}{3}-\dfrac{1}{2}\right)=0\)
\(\Rightarrow x+11=0\Rightarrow x=-11\)
Vậy x = -11
b, \(\dfrac{3}{\left(x+2\right)\left(x+5\right)}+\dfrac{5}{\left(x+5\right)\left(x+10\right)}+\dfrac{7}{\left(x+10\right)\left(x+17\right)}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Rightarrow\dfrac{1}{x+2}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+10}+\dfrac{1}{x+10}-\dfrac{1}{x+17}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Rightarrow\dfrac{1}{x+2}-\dfrac{1}{x+17}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Rightarrow\dfrac{x+17-x-2}{\left(x+2\right)\left(x+17\right)}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Rightarrow\dfrac{15}{\left(x+2\right)\left(x+17\right)}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Rightarrow x=15\)
Vậy x = 15
\(\left(-4\right)^2.\left(\dfrac{3}{4}-0,25\right)-\left(3.\dfrac{1}{2}-1\dfrac{1}{2}\right)-\sqrt{16}\)
\(=16.\left(\dfrac{3}{4}-\dfrac{1}{4}\right)-\left(\dfrac{3}{2}-\dfrac{3}{2}\right)-4\)
\(=16.\dfrac{1}{2}-0-4\)
\(=8-0-4=8-4=4\)
\(=\dfrac{11}{4}:\dfrac{33}{16}-0,5+\left(\dfrac{14}{5}-3\right)^2\\ =\dfrac{11}{4}\cdot\dfrac{16}{33}-\dfrac{1}{2}+\left(-\dfrac{1}{5}\right)^2\\ =\dfrac{4}{3}-\dfrac{1}{2}+\dfrac{1}{25}=\dfrac{131}{150}\)