Tính
10x (5x+2y-10)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (x + 3y) (2x2y - 6xy2)
= (x + 3y) + 2xy (x - 3y)
= 2xy [(x + 3y) (x - 3y)]
= 2xy (x2 - 3y2)
b) (6x5y2 - 9x4y3 + 15x3y4) : 3x3y2
= (6x5y2 : 3x3y2) + (-9x4y3 : 3x3y2) + (15x3y4 : 3x3y2)
= [(6 : 3) (x5 : x3) (y2 : y2)] + [(-9 : 3) (x4 : x3) (y3 : y2)] + [(15 : 3) (x3 : x3) (y4 : y2)]
= 2x2 + (-3xy) + 5y2
= 2x2 - 3xy + 5y2
\(5x\left(3x^2y-2xy^2+1\right)-3xy\left(5x^2-3xy\right)+x^2y^2-10=0\)
\(\Leftrightarrow15x^3y-10x^2y^2+5x-15x^3y+9x^2y^2+x^2y^2-10=0\)
\(\Leftrightarrow5x=10\Leftrightarrow x=2\)
\(a,\left\{{}\begin{matrix}3x-y=5\\4x+2y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-y=5\\2x+y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\\ b,\left\{{}\begin{matrix}5x+2y=9\\x+5y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x+2y=9\\5x+25y=55\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x+2y=9\\23y=46\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
\(c,\left\{{}\begin{matrix}3x+y=10\\4x-3y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x+3y=30\\4x-3y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}13x=39\\4x-3y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\\ d,\left\{{}\begin{matrix}4x+3y=22\\5x+3y=26\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\5x+3y=26\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=2\end{matrix}\right.\)
\(e,\left\{{}\begin{matrix}4x-3y=5\\5x+3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x=18\\5x+3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
a. \(\left\{{}\begin{matrix}3x-y=5\\4x+2y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x-2y=10\\4x+2y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}10x=20\\6x-2y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
b. \(\left\{{}\begin{matrix}5x+2y=9\\x+5y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x+2y=9\\5x+25y=55\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}23y=46\\5x+2y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=1\end{matrix}\right.\)
c. \(\left\{{}\begin{matrix}3x+y=10\\4x-3y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x+3y=30\\4x-3y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}13x=39\\4x-3y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)
d. \(\left\{{}\begin{matrix}4x+3y=22\\5x+3y=26\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\4x+3y=22\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=2\end{matrix}\right.\)
e. \(\left\{{}\begin{matrix}4x-3y=5\\5x+3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x=18\\4x-3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Theo đề, ta có: \(5x=2y\Leftrightarrow x=\dfrac{2y}{5}\left(1\right)\)
Thế vào ta có:
\(xy-10=0\)
\(\dfrac{2y}{5}.y-10=0\)
\(2y^2=50\)
\(y^2=25\)
\(\Rightarrow y=\pm5\)
Khi \(y=5\Rightarrow x=2\)
Khi \(y=-5\Rightarrow x=-2\)
Ta có : \(5x=2y\Leftrightarrow x=\dfrac{2y}{5}\left(1\right)\)
Thay \(\left(1\right)\) vào \(xy-10=0\)
\(\Leftrightarrow\dfrac{2y^2}{5}-10=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=5\\y=-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
a) pt <=> (2x-1)(2y+3)=7
TH1: 2x-1=7 và 2y+3=1
<=> x = 4 và y = -1
TH2: 2x - 1 = -7 và 2y + 3 = -1
<=> x = -3 và y = -2
TH3: 2x-1=1 và 2y+3=7
<=> x = 1 và y=2
TH4: 2x-1=-1 và 2y+3=-7
<=> x=0 và y=-5
Ta có: 6x - 2y = 7y - 3x
=> 6x + 3x = 7y + 2y
=> 9x = 9y => x = y
=> x - y = 0
mà x - y = 10 (đb)
=> ko có x; t tm
7x - 2y = 5x - 3y
=> 7x - 5x = -3y + 2y
=> 2x = -y
=> \(\frac{x}{-1}=\frac{y}{2}\) => \(\frac{2x}{-2}=\frac{3y}{6}\)
áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{-2}=\frac{3y}{6}=\frac{2x+3y}{-2+6}=\frac{20}{4}=5\)
=> \(\hept{\begin{cases}\frac{x}{-1}=5\\\frac{y}{2}=5\end{cases}}\) => \(\hept{\begin{cases}x=5.\left(-1\right)=-5\\y=5.2=10\end{cases}}\)
ta có 6x-2y=7y-3x chuyển vế sang
=>9x=9y
do x-y=10 nên x=10+y
=>9(10+y)=9y
=>90+9y=9y
=>90=0y
=>y=0=>x=10
10x(5x+2y-10)
=50x2+20xy-100x