S = 4+8+16...+92+96
Giải giúp mình mình cần gấp ạ!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}\)
=>\(B=\dfrac{32}{64}+\dfrac{16}{64}+\dfrac{6}{64}+\dfrac{2}{64}+\dfrac{1}{64}\)
=>\(B=\dfrac{32+16+6+2+1}{64}\)
=>\(B=\dfrac{63}{64}\)
TL
S= ( 1+ 3+ 3^2+ 3^3+ 3^4+ 3^5+ 3^6+ 3^7+ 3^8+ 3^9)
3.S=3.( 1+ 3+ 3^2+ 3^3+ 3^4+ 3^5+ 3^6+ 3^7+ 3^8+ 3^9)
3S=3+3^2+3^3+....+3^10
3S-S=3+3^2+3^3+....+3^10-(1+ 3+ 3^2+ 3^3+ 3^4+ 3^5+ 3^6+ 3^7+ 3^8+ 3^9)
2S=3^10-1
S=3^10-1/2
HỌC TỐT NHÉ
\(\dfrac{9^{15}.8^{11}}{3^{29}.16^8}=\dfrac{\left(3^2\right)^{15}.\left(2^3\right)^{11}}{3^{29}.\left(2^4\right)^8}=\dfrac{3^{30}.2^{33}}{3^{29}.2^{32}}\)
Ta lấy vễ trên chia vế dưới
\(=3.2=6\)
\(\dfrac{2^{11}.9^3}{3^5.16^2}=\dfrac{2^{11}.\left(3^2\right)^3}{3^5.\left(2^4\right)^2}=\dfrac{2^{11}.3^6}{3^5.2^8}\)
Ta lấy vế trên chia vế dưới
\(=2^3.3=24\)
\(\dfrac{9^{15}.8^{11}}{3^{29}.16^8}=\dfrac{\left(3^2\right)^{15}.\left(2^3\right)^{11}}{3^{29}.\left(2^4\right)^8}=\dfrac{3^{30}.2^{33}}{3^{29}.3^{32}}=3.2=6\)
\(\dfrac{2^{11}.9^3}{3^5.16^2}=\dfrac{2^{11}.\left(3^2\right)^3}{3^5.\left(2^4\right)^2}=\dfrac{2^{11}.3^6}{3^5.2^8}=2^3.3=8.3=24\)
\(A=\frac{\left[\left(25-1\right):1+1\right]\left(25+1\right)}{2}=325.\)
\(B=\frac{\left[\left(51-3\right):2+1\right]\left(51+3\right)}{2}=675\)
\(C=\frac{\left[\left(81-1\right):4+1\right]\left(81+1\right)}{2}=861\)
1/2 + 1/4 + 1/8 + … + 1/128
= 1 - 1/2 + 1/2 - 1/4 + 1/4 - 1/8 + … + 1/64 - 1/128
= 1 - 1/128
= 128/128 - 1/128
= 127/128
Chúc bạn học tốt.
😁😁😁
\(\left(\dfrac{1}{4}\right)^{2n}=\left(\dfrac{1}{8}\right)^2\)
\(\Rightarrow\left(\dfrac{1}{2}\right)^{2.2n}=\left(\dfrac{1}{2}\right)^{3.2}\)
\(\Rightarrow\left(\dfrac{1}{2}\right)^{4n}=\left(\dfrac{1}{2}\right)^6\)
\(\Rightarrow4n=6\)
\(\Rightarrow n=\dfrac{6}{4}=\dfrac{3}{2}\)
B = 2-4-6+8 + 10-12-14+16 + ... + 90-92-94+96 + 98 - 100
B = (2-4-6+8) + (10-12-14+16) + ... + (90-92-94+96) + (98 - 100)
B = 0 + 0 + ... + 0 + (-2)
B = -2
a) Vì \(-45< -16\) nên \(\left(-\dfrac{45}{17}\right)^{15}< \left(\dfrac{-16}{17}\right)^{15}\)
b) Vì \(21< 23\) nên \(\left(-\dfrac{8}{9}\right)^{21}< \left(-\dfrac{8}{9}\right)^{23}\)
c) \(27^{40}=3^{3^{40}}=3^{120}\)
\(64^{60}=8^{2^{60}}=8^{120}\)
Vì \(3< 8\) nên \(3^{120}< 8^{120}\) hay \(27^{40}< 64^{60}\)
con ai kooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
A = 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\)+ \(\dfrac{1}{16}\) + \(\dfrac{1}{32}\)+ \(\dfrac{1}{64}\)+ \(\dfrac{1}{128}\)
A\(\times\)2 = 2 + 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) + \(\dfrac{1}{32}\) + \(\dfrac{1}{64}\)
A \(\times\) 2 - A = 2 - \(\dfrac{1}{128}\)
A \(\times\)( 2-1) = \(\dfrac{255}{128}\)
A = \(\dfrac{255}{128}\)
Gọi \(1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}+\dfrac{1}{128}\) là T
\(T=1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}+\dfrac{1}{128}\)
\(2T=2+1+\dfrac{1}{2}+\dfrac{1}{4}+....+\dfrac{1}{64}\)
\(2T-T=\left(2+1+\dfrac{1}{2}+\dfrac{1}{4}+....+\dfrac{1}{64}\right)-\left(1+\dfrac{1}{2}+....+\dfrac{1}{64}+\dfrac{1}{128}\right)\)
\(T=2+\left(1-1\right)+\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+....+\left(\dfrac{1}{64}-\dfrac{1}{64}\right)-\dfrac{1}{128}\)
\(T=2+0+0+...-\dfrac{1}{128}\)
\(T=\dfrac{256}{128}-\dfrac{1}{128}\)
\(T=\dfrac{255}{128}\)
Số các số hạng là: ( 96 -4) : 4 +1 = 24 số
Tổng là: ( 96 + 4) . 24 : 2 = 1200
S có số số hạng là: (96-4) :2+1=47 số
tổng của S là : (96+4)x47 :2= 2350
đáp số : 2350