Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = 1/2+1/4+1/8+1/18+1/32+1/64+1/128+1/256
=> 2A = 1+1/2+1/4+1/8+1/18+1/32+1/64+1/128
=> 2A - A = 1 - 1/256
=> A = 255/256 nhé!
1/2 + 1/4 + 1/8 + … + 1/128
= 1 - 1/2 + 1/2 - 1/4 + 1/4 - 1/8 + … + 1/64 - 1/128
= 1 - 1/128
= 128/128 - 1/128
= 127/128
Chúc bạn học tốt.
😁😁😁
Mk có cách giải khác nè
1/4+1/8+1/16+1/32+1/64+1/128
= 1/2-1/4+1/4-1/8+1/8-1/16+1/16-1/32+1/32-1/64+1/64-1/128
= 1/2-1/128
= 63/128
Đặt A=1/2+1/4+...+1/128
=1/2+(1/2)^2+...+(1/2)^7
=>2A=1+1/2+...+(1/2)^6
=>2A-A=1+1/2+...+(1/2)^6-1/2-1/4-...-1/128
=>A=1-1/128=127/128
b: A=1/3+1/9+...+1/3^10
=>3A=1+1/3+...+1/3^9
=>A*2=1-1/3^10=(3^10-1)/3^10
=>A=(3^10-1)/(2*3^10)
c: C=3/2+3/8+3/32+3/128+3/512
=>4C=6+3/2+...+3/128
=>3C=6-3/512
=>C=1023/512
d: A=1/2+...+1/256
=>2A=1+1/2+...+1/128
=>A=1-1/256=255/256
A = \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\)+ \(\dfrac{1}{32}\)+\(\dfrac{1}{64}\)+\(\dfrac{1}{128}\)
A\(\times\) 2 = 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\)+ \(\dfrac{1}{32}\)+ \(\dfrac{1}{64}\)
A \(\times\) 2 - A = 1 - \(\dfrac{1}{128}\)
A\(\times\)(2-1) = \(\dfrac{128-1}{128}\)
A = \(\dfrac{127}{128}\)
Gọi \(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}+\dfrac{1}{128}\) là B
\(B=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}+\dfrac{1}{128}\)
\(2\cdot B=1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{12}+\dfrac{1}{32}+\dfrac{1}{64}\)
\(2\cdot B-B=1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{12}+\dfrac{1}{32}+\dfrac{1}{64}-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}+\dfrac{1}{128}\right)\)
\(B=1+\left(\dfrac{1}{2}-\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+.....+\dfrac{1}{64}-\dfrac{1}{64}\right)-\dfrac{1}{128}\)
\(B=1+0-\dfrac{1}{128}\)
\(B=1-\dfrac{1}{128}\)
\(B=\dfrac{128}{128}-\dfrac{1}{128}\)
\(B=\dfrac{127}{128}\)
Sửa đề :
\(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\)
Bài làm :
\(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\)
\(=\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+...+\frac{1}{128}-\frac{1}{256}\)
\(=\frac{1}{4}-\frac{1}{256}=\frac{63}{256}\)
\(\frac{1}{2}\)+ \(\frac{1}{4}\)+ \(\frac{1}{16}\)+ \(\frac{1}{32}\)+ \(\frac{1}{64}\)+ \(\frac{1}{128}\)= \(\frac{123}{234}\)
A = 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\)+ \(\dfrac{1}{16}\) + \(\dfrac{1}{32}\)+ \(\dfrac{1}{64}\)+ \(\dfrac{1}{128}\)
A\(\times\)2 = 2 + 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) + \(\dfrac{1}{32}\) + \(\dfrac{1}{64}\)
A \(\times\) 2 - A = 2 - \(\dfrac{1}{128}\)
A \(\times\)( 2-1) = \(\dfrac{255}{128}\)
A = \(\dfrac{255}{128}\)
Gọi \(1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}+\dfrac{1}{128}\) là T
\(T=1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}+\dfrac{1}{128}\)
\(2T=2+1+\dfrac{1}{2}+\dfrac{1}{4}+....+\dfrac{1}{64}\)
\(2T-T=\left(2+1+\dfrac{1}{2}+\dfrac{1}{4}+....+\dfrac{1}{64}\right)-\left(1+\dfrac{1}{2}+....+\dfrac{1}{64}+\dfrac{1}{128}\right)\)
\(T=2+\left(1-1\right)+\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+....+\left(\dfrac{1}{64}-\dfrac{1}{64}\right)-\dfrac{1}{128}\)
\(T=2+0+0+...-\dfrac{1}{128}\)
\(T=\dfrac{256}{128}-\dfrac{1}{128}\)
\(T=\dfrac{255}{128}\)