Tìm x
a)3 mũ x + 3 mũ x+1 + 3 mũ x+2 = 1053
b)5 mũ x . 5 mũ 19 = 5 mũ 20 . 5 mũ 11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
1; 5\(x\) + \(x\) = 39 - 311 : 39
\(x\).(5 + 1) = 39 - 32
\(x.6\) = 39 - 9
\(x.6\) = 30
\(x\) = 30 : 6
\(x\) = 5
Vậy \(x\) = 5
2; 5\(x\) + \(x\) = 150 : 2 + 3
\(x\).(5 + 1) = 75 + 3
\(x.6\) = 78
\(x\) = 78 : 6
\(x\) = 13
Vậy \(x=13\)
Bài 1:
2\(x\) = 4
2\(^x\) = 22
\(x=2\)
Vậy \(x=2\)
Bài 2:
2\(^x\) = 8
2\(^x\) = 23
\(x=3\)
Vậy \(x=3\)
Bài 1:
a) Ta có: \(\left(2x-1\right)^{20}=\left(2x-1\right)^{18}\)
\(\Leftrightarrow\left(2x-1\right)^{20}-\left(2x-1\right)^{18}=0\)
\(\Leftrightarrow\left(2x-1\right)^{18}\left[\left(2x-1\right)^2-1\right]=0\)
\(\Leftrightarrow\left(2x-1\right)^{18}\cdot\left(2x-2\right)\cdot2x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)
b) Ta có: \(\left(2x-3\right)^2=9\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=3\\2x-3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=6\\2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=0\end{matrix}\right.\)
c) Ta có: \(\left(x-5\right)^2=\left(1-3x\right)^2\)
\(\Leftrightarrow\left(x-5\right)^2-\left(3x-1\right)^2=0\)
\(\Leftrightarrow\left(x-5-3x+1\right)\left(x-5+3x-1\right)=0\)
\(\Leftrightarrow\left(-2x-4\right)\left(4x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{3}{2}\end{matrix}\right.\)
Bài 2:
a) \(15^{20}-15^{19}=15^{19}\left(15-1\right)=15^{19}\cdot14⋮14\)
b) \(3^{20}+3^{21}+3^{22}=3^{20}\left(1+3+3^2\right)=3^{20}\cdot13⋮13\)
c) \(3+3^2+3^3+...+3^{2007}\)
\(=3\left(1+3+3^2\right)+...+3^{2005}\left(1+3+3^2\right)\)
\(=13\left(3+...+3^{2005}\right)⋮13\)
Bài 1 :
\(M=\dfrac{30-2^{20}}{2^{18}}=\dfrac{2.15-2^{20}}{2^{18}}=\dfrac{15}{2^{17}}-2^2=\dfrac{15}{2^{17}}-4< 0\left(\dfrac{15}{2^{17}}< 1\right)\)
\(N=\dfrac{3^5}{1^{2021}+2^3}=\dfrac{3^5}{9}=\dfrac{3^5}{3^2}=3^3=27\)
\(\Rightarrow M< N\)
Bài 3 :
a) \(t^2+5t-8\) khi \(t=2\)
\(=5^2+2.5-8\)
\(=25+10-8\)
\(=27\)
b) \(\left(a+b\right)^2-\left(b-a\right)^3+2021\left(1\right)\)
\(\left\{{}\begin{matrix}a=5\\b=a+1=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=11\\b-a=1\end{matrix}\right.\)
\(\left(1\right)=11^2-1^3+2021=121-1+2021=2141\)
c) \(x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3\left(1\right)\)
\(\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\) \(\Rightarrow x-y=1\)
\(\left(1\right)=1^3=1\)
1,a) 695- [200+ (11- 12)]
= 695- [200+ (11- 1)]
= 695- [200+ 10]
= 695- 210
= 485
b) (519: 517+ 3): 7
= (52+ 3): 7
= (25+ 3): 7
= 28: 7
= 4
c) 129- 5[29- (6- 12)]
= 129- 5[29- (6- 1)]
= 129- 5[29- 5]
= 129- 5. 24
= 129- 120
= 9
3,a) 2x- 49= 5. 32
2x- 49= 5. 9
2x- 49= 45
2x = 45+ 49
2x = 94
x = 94: 2
x = 47
c) 2x- 15= 17
2x = 17+ 15
2x = 32
2x = 25
=> x = 5
Câu 3b bạn tự làm nhé, xin loiosxn vì không giúp được cả bài.
CHÚC BẠN HỌC GIỎI !!!
MÌNH TÌM RA CÁCH LÀM CÂU 3b RỒI !!!
5x+ 2x= 45+ 20: 15
5x+ 2x= 45+ \(\frac{4}{3}\)
5x+ 2x= \(\frac{139}{3}\)
(5+ 2)x=\(\frac{139}{3}\)
7x =\(\frac{139}{3}\)
x =\(\frac{139}{3}\): 7
x =\(\frac{139}{21}\)
CHÚC BẠN HỌC GIỎI !!!
1. \(6x^3-8=40\\ 6x^3=48\\ x^3=8\\ \Rightarrow x=2\)Vậy x = 2
2. \(4x^5+15=47\\ 4x^5=32\\ x^5=8\\ \Rightarrow x\in\varnothing\left(\text{vì }x\in N\right)\)Vậy x ∈ ∅
3. \(2x^3-4=12\\ 2x^3=16\\ x^3=8\\ \Rightarrow x=2\)Vậy x = 2
4. \(5x^3-5=0\\ 5x^3=5\\ x^3=1\\ \Rightarrow x=1\)Vậy x = 1
5. \(\left(x-5\right)^{2016}=\left(x-5\right)^{2018}\\ \Rightarrow\left[{}\begin{matrix}x-5=0\\x-5=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=6\end{matrix}\right.\)Vậy \(x\in\left\{5;6\right\}\)
6. \(\left(3x-2\right)^{20}=\left(3x-1\right)^{20}\\ \Rightarrow3x-2=3x-1\\ 3x-3x=2-1\\ 0=1\left(\text{vô lí}\right)\)Vậy x ∈ ∅
7. \(\left(3x-1\right)^{10}=\left(3x-1\right)^{20}\\ \left(3x-1\right)^{10}=\left[\left(3x-1\right)^2\right]^{10}\\ \Rightarrow\left(3x-1\right)^2=3x-1\\ \left(3x-1\right)^2-\left(3x-1\right)=0\\ \left(3x-1\right)\left[\left(3x-1\right)-1\right]=0\\ \left(3x-1\right)\left(3x-2\right)=0\\ \Rightarrow\left[{}\begin{matrix}3x-1=0\\3x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}3x=1\\3x=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{1}{3}\left(\text{loại vì }x\in N\right)\\x=\frac{2}{3}\left(\text{loại vì }x\in N\right)\end{matrix}\right.\)Vậy x ∈ ∅
8. \(\left(2x-1\right)^{50}=2x-1\\ \left(2x-1\right)^{50}-\left(2x-1\right)=0\\ \left(2x-1\right)\left[\left(2x-1\right)^{49}-1\right]=0\\ \Rightarrow\left[{}\begin{matrix}2x-1=0\\\left(2x-1\right)^{49}=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=1\\2x-1=1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\frac{1}{2}\left(\text{loại vì }x\in N\right)\\x=1\left(t/m\right)\end{matrix}\right.\)Vậy x = 1
9. \(\left(\frac{x}{3}-5\right)^{2000}=\left(\frac{x}{3}-5\right)^{2008}\\ \left(\frac{x}{3}-5\right)^{2008}-\left(\frac{x}{3}-5\right)^{2000}=0\\ \left(\frac{x}{3}-5\right)^{2000}\left[\left(\frac{x}{3}-5\right)^8-1\right]=0\\ \Rightarrow\left[{}\begin{matrix}\left(\frac{x}{3}-5\right)^{2000}=0\\\left(\frac{x}{3}-5\right)^8=1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}\frac{x}{3}-5=0\\\frac{x}{3}-5=1\\\frac{x}{3}-5=-1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}\frac{x}{3}=5\\\frac{x}{3}=6\\\frac{x}{3}=4\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\cdot3=15\\x=6\cdot3=18\\x=4\cdot3=12\end{matrix}\right.\)Vậy \(x\in\left\{15;18;12\right\}\)
\(1.6x^3-8=40\\ \Leftrightarrow6x^3=48\\ \Leftrightarrow x^3=8\Leftrightarrow x^3=2^3=\left(-2\right)^3\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy \(x\in\left\{2;-2\right\}\)
\(2.4x^3+15=47\) (T nghĩ đề là mũ 3)
\(\Leftrightarrow4x^3=32\Leftrightarrow x^3=8=2^3=\left(-2\right)^3\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy \(x\in\left\{2;-2\right\}\)
Câu 3, 4 tương tự nhé.
\(4^8.2^{20}=2^{16}.2^{20}=2^{36}\)
\(9^{12}.27^5.81^4=3^{24}.3^{15}.3^{16}=3^{55}\)
mk chỉnh đề
\(64^3.4^5.16^2=4^9.4^5.4^4=4^{18}\)
\(25^{20}.125^4=5^{40}.5^{12}=5^{52}\)
\(x^7.x^4.x^3=x^{14}\)
\(A=5\cdot4^{15}\cdot9^9-4\cdot3^{20}\cdot8^9\)
\(A=5\cdot\left(2^2\right)^{15}\cdot\left(3^2\right)^9-2^2\cdot3^{20}\cdot\left(2^3\right)^9\)
\(A=5\cdot2^{30}\cdot3^{18}-2^2\cdot3^{20}\cdot2^{27}\)
\(A=5\cdot2^{30}\cdot3^{18}-2^{29}\cdot3^{20}\)
\(A=2^{29}\cdot3^{18}\cdot\left(5\cdot2^1\cdot1-1\cdot3^2\right)\)
\(A=2^{29}\cdot3^{18}\cdot\left(5-9\right)\)
\(A=-2^2\cdot2^{29}\cdot3^{18}\)
\(A=-2^{31}\cdot3^{18}\)
_______________
\(B=5\cdot2^9\cdot6^{19}-7\cdot2^{29}\cdot27^6\)
\(B=5\cdot2^9\cdot2^{19}\cdot3^{19}-7\cdot2^{29}\cdot\left(3^3\right)^6\)
\(B=5\cdot2^{28}\cdot3^{19}-7\cdot2^{29}\cdot3^{18}\)
\(B=2^{28}\cdot3^{18}\cdot\left(5\cdot1\cdot3-7\cdot2\cdot1\right)\)
\(B=2^{28}\cdot3^{18}\cdot\left(15-14\right)\)
\(B=2^{28}\cdot3^{18}\)
Ta có: \(A:B\)
\(=\left(-2^{31}\cdot3^{18}\right):\left(2^{28}\cdot3^{18}\right)\)
\(=\left(-2^{31}:2^{28}\right)\cdot\left(3^{18}:3^{18}\right)\)
\(=-2^3\cdot1\)
\(=-8\)
a. 3x+3x+1+3x+2=1053
=> 3x.(1+3+32)=1053
=> 3x.(1+3+9)=1053
=> 3x.13=1053
=> 3x=1053:13
=> 3x=81
=> 3x=34
=> x=4
b. 5x.519=520.511
=> 519+x=520+11
=> 19+x=20+11
=> 19+x=31
=> x=31-19
=> x=12
\(3^x+3^{x+1}+3^{x+2}=1053\)
\(3^x\left(1+3+3^2\right)=1053\)
\(3^x\cdot13=1053\)
\(3^x=1053:13=81\)
\(3^x=3^4\)
=> x = 4