cho biết 32*33*34*35*36=452a9040 hãy tìm a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=3+3^2+3^3+3^4+3^5+3^6+3^7+3^8\\=(3+3^2)+(3^3+3^4)+(3^5+3^6)+(3^7+3^8)\\=3\cdot(1+3)+3^3\cdot(1+3)+3^5\cdot(1+3)+3^7\cdot(1+3)\\=3\cdot4+3^3\cdot4+3^5\cdot4+3^7\cdot4\\=4\cdot(3+3^3+3^5+3^7)\)
Vì \(4\cdot(3+3^3+3^5+3^7) \vdots 4\)
nên \(B\vdots4\).
`#3107.101107`
\(B=3+3^2+3^3+3^4+3^5+3^6+3^7+3^8\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+\left(3^5+3^6\right)+\left(3^7+3^8\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+3^5\left(1+3\right)+3^7\left(1+3\right)\)
\(=\left(1+3\right)\left(3+3^3+3^5+3^7\right)\)
\(=4\left(3+3^3+3^5+3^7\right)\)
Vì \(4\left(3^3+3^5+3^7\right)\) $\vdots 4$
`\Rightarrow B \vdots 4`
Vậy, `B \vdots 4.`
Ta có:
\(A=3+3^2+3^3+3^4+3^5+3^6\)
\(A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)\)
\(A=39+3^3.\left(3+3^2+3^3\right)\)
\(A=39+3^3.39\)
\(A=39.\left(1+3^3\right)\)
Vì \(39⋮13\) nên \(39.\left(1+3^3\right)⋮13\)
Vậy \(A⋮13\)
\(#WendyDang\)
Lời giải:
$A=(3+3^2+3^3)+(3^4+3^5+3^6)$
$=3(1+3+3^2)+3^4(1+3+3^2)=(1+3+3^2)(3+3^4)=13(3+3^4)\vdots 13$
Ta có đpcm.
C = 3 - 32 + 33 - 34 + 35 - 36 +...+ 323 - 324
3C = 32 - 33 + 34 - 35 + 36-...- 323 + 324 - 325
3C - C = -325 - 3
2C = -325 - 3
2C = - ( 325 + 3) = - [(34)6. 3 + 3] = - [\(\overline{...1}\)6.3+3] = -[ \(\overline{..3}\) + 3]
2C = - \(\overline{..6}\)
⇒ \(\left[{}\begin{matrix}C=\overline{..3}\\C=\overline{..8}\end{matrix}\right.\)
⇒ C không thể chia hết cho 420 ( xem lại đề bài em nhé)
b, (\(x+1\))2022 + (\(\sqrt{y-1}\) )2023 = 0
Vì (\(x+1\))2022 ≥ 0
\(\sqrt{y-1}\) ≥ 0 ⇒ (\(\sqrt{y-1}\))2023 ≥ 0
Vậy (\(x\) + 1)2022 + (\(\sqrt{y-1}\))2023 = 0
⇔ \(\left\{{}\begin{matrix}\left(x+1\right)^{2022}=0\\\sqrt{y-1}=0\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x+1=0\\y-1=0\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
Kết luận: cặp (\(x,y\)) thỏa mãn đề bài là:
(\(x,y\)) = (-1; 1)
tổng trên có số hạng tử là (2015-31):1+1=1985(hạng tử)
tổng trên =-1-1-1-...-1+2015=-1984+2015=31
tích đúng cho mk nhé
\(S=\left(1+3\right)+...+3^8\left(1+3\right)=4\left(1+...+3^8\right)⋮4\)
\(S=\left(1+3+3^2\right)+...+3^7\left(1+3+3^2\right)\)
\(=13\left(1+...+3^7\right)⋮13\)
\(S=1+3+3^2+3^3+3^4+3^5+3^6+3^7+3^8+3^9\)
\(S=\left(1+3\right)+\left(3^2+3^3\right)+\left(3^4+3^5\right)+\left(3^6+3^7\right)+\left(3^8+3^9\right)\)
\(S=4+3^2\left(1+3\right)+3^4\left(1+3\right)+3^6\left(1+3\right)+3^8\left(1+3\right)\)
\(S=4+3^2.4+3^4.4+3^6.4+3^8.4\)
\(S=4\left(3^2+3^4+3^6+3^8\right)\)
\(4⋮4\\ \Rightarrow4\left(3^2+3^4+3^6+3^8\right)⋮4\\ \Rightarrow S⋮4\)
\(S=1.\left(1+3\right)+3^2\left(1+3\right)+3^4\left(1+3\right)+...+3^8\left(1+3\right)\)
\(S=4x\left(1+3^2+...+3^8\right)\)
Vì 4 chia hết cho 4 nên S chia hết cho 4
Do 36 chia hết cho 9 nên ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯452a9040452a9040¯ chia hết cho 9
-> 4 + 5 + 2 + a + 9 + 0 + 4 + 0 = 24 + a chia hết cho 9 . Nên a = 3