tính số đo các góc của tứ giác ABCD biết: \(\dfrac{< A-1^o}{4}\)=\(\dfrac{< B-2^o}{3}\)=\(\dfrac{< C-3^o}{2}\)=\(\dfrac{< D-4^o}{1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a-1}{4}=\dfrac{b-2}{3}=\dfrac{c-3}{2}=\dfrac{d-4}{1}=\dfrac{a+b+c+d-1-2-3-4}{4+3+2+1}=\dfrac{350}{10}=35\)
Do đó: a-1=140; b-2=105; c-3=70; d-4=35
=>a=141; b=107; c=73; d=39
\(\dfrac{A}{1}=\dfrac{B}{2}=\dfrac{C}{3}=\dfrac{D}{4}=\dfrac{A+B+C+D}{1+2+3+4}=\dfrac{360}{10}=36\)
\(\Rightarrow A=36^0;B=36.2=72^0;C=36.3=108^0;D=36.4=144^0\)
Do tứ giác ABCD nội tiếp \(\Rightarrow B+D=180^0\) (1)
Mà \(\dfrac{B}{D}=\dfrac{2}{3}\Rightarrow B=\dfrac{2}{3}D\)
Thế vào (1):
\(\dfrac{2}{3}D+D=180^0\Rightarrow\dfrac{5}{3}D=180^0\)
\(\Rightarrow D=108^0\)
\(B=\dfrac{2}{3}D=\dfrac{2}{3}.108^0=72^0\)
a: Sửa đề: sin x=4/5
cosx=-3/5; tan x=-4/3; cot x=-3/4
b: 270 độ<x<360 độ
=>cosx>0
=>cosx=1/2
tan x=căn 3; cot x=1/căn 3
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a-1}{4}=\dfrac{b-2}{3}=\dfrac{c-3}{2}=\dfrac{d-4}{1}=\dfrac{a+b+c+d-1-2-3-4}{4+3+2+1}=\dfrac{360-10}{10}=35\)
Do đó: a-1=140; b-2=105; c-3=70; d-4=35
=>a=141; b=107; c=73; d=39
Lời giải:
$\widehat{AOB}=2\widehat{ACB}=2.45^0=90^0$
Tam giác $OAB$ vuông cân tại $O$ nên $OA=\frac{AB}{\sqrt{2}}=\frac{a}{\sqrt{2}}$
Chu vi hình tròn $(O)$:
$2\pi OA=a\sqrt{2}\pi$
Độ dài cung nhỏ AB: $a\sqrt{2}\pi.\frac{90^0}{360^0}=\frac{a\sqrt{2}\pi}{4}$
Đáp án B.
Gọi N là trung điểm AB \(\Rightarrow\left\{{}\begin{matrix}ON\perp AB\\SO\perp AB\end{matrix}\right.\) \(\Rightarrow AB\perp\left(SON\right)\)
Từ O kẻ \(OH\perp SN\) (H thuộc SN) \(\Rightarrow OH\perp\left(SAB\right)\Rightarrow OH=d\left(O;\left(SAB\right)\right)\)
\(ON=\dfrac{1}{2}AD=\dfrac{a}{2}\) ; \(SO=\dfrac{a\sqrt{2}}{2}\)
Hệ thức lượng: \(OH=\dfrac{SO.ON}{\sqrt{SO^2+ON^2}}=\dfrac{a\sqrt{6}}{6}\)
Lại có: M là trung điểm OD \(\Rightarrow OM=\dfrac{1}{2}OD\Rightarrow BM=\dfrac{3}{2}OB\)
\(\Rightarrow d\left(M;\left(SAB\right)\right)=\dfrac{3}{2}d\left(O;\left(SAB\right)\right)=\dfrac{3}{2}.\dfrac{a\sqrt{6}}{6}=\dfrac{a\sqrt{6}}{4}\)