K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a-1}{4}=\dfrac{b-2}{3}=\dfrac{c-3}{2}=\dfrac{d-4}{1}=\dfrac{a+b+c+d-1-2-3-4}{4+3+2+1}=\dfrac{360-10}{10}=35\)

Do đó: a-1=140; b-2=105; c-3=70; d-4=35

=>a=141; b=107; c=73; d=39

15 tháng 7 2023

\(\dfrac{A}{1}=\dfrac{B}{2}=\dfrac{C}{3}=\dfrac{D}{4}=\dfrac{A+B+C+D}{1+2+3+4}=\dfrac{360}{10}=36\)

\(\Rightarrow A=36^0;B=36.2=72^0;C=36.3=108^0;D=36.4=144^0\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a-1}{4}=\dfrac{b-2}{3}=\dfrac{c-3}{2}=\dfrac{d-4}{1}=\dfrac{a+b+c+d-1-2-3-4}{4+3+2+1}=\dfrac{350}{10}=35\)

Do đó: a-1=140; b-2=105; c-3=70; d-4=35

=>a=141; b=107; c=73; d=39

12 tháng 9 2021

\(\widehat{D}=\dfrac{3}{2}\widehat{B}=\dfrac{3}{2}.60^0=90^0\)

\(\widehat{D}=\dfrac{4}{3}\widehat{C}\Rightarrow\widehat{C}=\dfrac{3}{4}\widehat{D}=\dfrac{3}{4}.90^0=67,5^0\)

\(\widehat{A}=360^0-\widehat{B}-\widehat{C}-\widehat{D}=360^0-60^0-90^0-67,5^0=142,5^0\)

22 tháng 5 2021

`1/a^2+1/b^2+1/c^2<=(a+b+c)/(abc)`
`<=>1/a^2+1/b^2+1/c^2<=1/(ab)+1/(bc)+1/(ca)`
`<=>2/a^2+2/b^2+2/c^2<=2/(ab)+2/(bc)+2/(ca)`
`<=>1/a^2-2/(ab)+1/b^2+1/b^2-2/(bc)+1/c^2+1/c^2-2/(ac)+1/a^2<=0`
`<=>(1/a-1/b)^2+(1/b-1/c)^2+(1/c-1/a)^2<=0`
Mà `(1/a-1/b)^2+(1/b-1/c)^2+(1/c-1/a)^2>=0`
`=>(1/a-1/b)^2+(1/b-1/c)^2+(1/c-1/a)^2=0`
`<=>1/a=1/b=1/c`
`<=>a=b=c`
`=>` tam giác này là tam giác đều
`=>hata=hatb=hatc=60^o`

22 tháng 5 2021

Áp dụng bđt cosi với hai số dương:

\(\dfrac{1}{a^2}+\dfrac{1}{b^2}\ge\dfrac{2}{ab}\)     ; \(\dfrac{1}{b^2}+\dfrac{1}{c^2}\ge\dfrac{2}{bc}\)      ; \(\dfrac{1}{a^2}+\dfrac{1}{c^2}\ge\dfrac{2}{ac}\)

\(\Rightarrow2\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)\ge2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\right)\)

\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\ge\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\)  (*)

Theo giả thiết có: \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\le\dfrac{1}{bc}+\dfrac{1}{ac}+\dfrac{1}{ab}\)  (2*)

Từ (*), (2*) ,dấu = xảy ra \(\Leftrightarrow a=b=c\)

=> Tam giác chứa ba cạnh a,b,c thỏa mãn gt là tam giác đều

=> Số đo các góc là 60 độ

 

24 tháng 11 2021

haizz

2:

a: Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{24}{9}=\dfrac{8}{3}\)

=>x=16/3; y=8; z=32/3

A=3x+2y-6z

=3*16/3+2*8-6*32/3

=16+16-64

=-32

b: Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{z}{7}=\dfrac{x-y+z}{5-6+7}=\dfrac{6\sqrt{2}}{6}=\sqrt{2}\)

=>x=5căn 2; y=6căn 2; y=7căn 2

B=xy-yz

=y(x-z)

=6căn 2(5căn 2-7căn 2)

=-6căn 2*2căn 2

=-24

10 tháng 8 2023

bài 1 a)áp dụng dãy tỉ số bằng nhau ta có:\(\dfrac{a+b+c}{3+4+5}\)=\(\dfrac{24}{12}\)=2

a=2.3=6 ; b=2.4=8 ;c=2.5=10

M=ab+bc+ac=6.8+8.10+6.10=48+80+60=188

"nhưng bài còn lại làm tương tự"

19 tháng 8 2017

Theo bài ra ta có: \(\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{3}=\widehat{\frac{D}{4}}\) 
áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}}{1+2+3+4}=\frac{360^0}{10}=36\)
\(\Rightarrow\frac{\widehat{A}}{1}=36\Rightarrow\widehat{A}=36.1=36^0\)
\(\Rightarrow\frac{\widehat{B}}{2}=36\Rightarrow\widehat{B}=36.2=72^0\)
\(\Rightarrow\frac{\widehat{C}}{3}=36\Rightarrow\widehat{C}=36.3=108^0\)
\(\Rightarrow\frac{\widehat{D}}{4}=36\Rightarrow\widehat{D}=36.4=144^0\)