Tính nhanh
A=1/3 +1/3^2 +1/3^3 +...+1/3^8 =?
B=1/3 +1/3^2 +1/3^3 +...+1/3^2008 = ?
pls help mình nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A = 1 + 2 + 3 + 4+... + 50;
Tổng A có 50 số hạng nên A = (1 + 50).50:2 = 1275,
b) B = 2 + 4 + 6 + 8 + ...+100;
Số số hạng của tổng B là: (100 - 2): 2+1 = 50 (số)
Do đó B = (2 +100).50 : 2 = 2550.
c) C = 1 + 3 + 5 + 7 +... + 99;
Số số hạng của tổng C là: (99 - 1): 2 +1 = 50 (số)
Do đó C = (1 + 99). 50 : 2 = 2500.
d = 2 + 5 + 8 + 11 .... 98
= ( 92 - 2 ) : 3 + 1 = 33
= 33 . ( 98 + 2 ) : 2
= 1650
tick cho tớ với
`a)(1-1/2)xx(1-1/3)xx(1-1/4)xx(1-1/5)`
`=1/2xx2/3xx3/4xx4/5`
`=[1xx2xx3xx4]/[2xx3xx4xx5]`
`=1/5`
`b)(1-3/4)xx(1-3/7)xx(1-3/10)xx(1-3/13)xx .... xx(1-3/97)xx(1-3/100)`
`=1/4xx4/7xx7/10xx10/13xx .... xx94/97xx97/100`
`=[1xx4xx7xx10xx...xx94xx97]/[4xx7xx10xx13xx....xx97xx100]`
`=1/100`
\(A=\left(6-\dfrac{2}{3}+\dfrac{1}{2}\right)-\left(5+\dfrac{5}{3}-\dfrac{3}{2}\right)-\left(3-\dfrac{7}{3}+\dfrac{5}{2}\right)\\ A=\dfrac{35}{6}-\dfrac{31}{6}-\dfrac{19}{6}=-\dfrac{15}{6}\)
a) \(\dfrac{1}{3}+\dfrac{3}{5}+\dfrac{1}{15}-\dfrac{3}{4}-\dfrac{2}{9}-\dfrac{1}{36}+\dfrac{1}{72}\)
\(=\dfrac{5+9+1}{15}-\dfrac{27+8+1}{36}+\dfrac{1}{72}=1-1+\dfrac{1}{72}=\dfrac{1}{72}\)
b) \(=\dfrac{1}{5}-\dfrac{1}{5}-\dfrac{3}{7}+\dfrac{3}{7}+\dfrac{5}{9}-\dfrac{5}{9}-\dfrac{1}{11}+\dfrac{1}{11}+\dfrac{7}{13}-\dfrac{7}{13}-\dfrac{9}{16}\)
\(=\dfrac{9}{16}\)
a) = 1/2 - 1/2 + 1/3 -1/3 + 1/4 - 1/4 + 1/5 - 1/5 + 1/6
= 0 + 0 + 0 + 0 + 1/6
= 1/6
b) 2/3 + 2/4 - 2/4 + 2/5 - 2/5 + 2/6 - 2/6 + 2/7 - 2/7 + 28
= 2/3 + 28
= 86/3
[tick cho mik nha]
Giải:
a) \(\left(1-\dfrac{1}{2}\right).\left(1-\dfrac{1}{3}\right).\left(1-\dfrac{1}{4}\right).\left(1-\dfrac{1}{5}\right)\)
\(=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}\)
\(=\dfrac{1.2.3.4}{2.3.4.5}\)
\(=\dfrac{1}{5}\)
b) \(\left(1-\dfrac{3}{4}\right).\left(1-\dfrac{3}{7}\right).\left(1-\dfrac{3}{10}\right).\left(1-\dfrac{3}{13}\right).....\left(1-\dfrac{3}{97}\right).\left(1-\dfrac{3}{100}\right)\)
\(=\dfrac{1}{4}.\dfrac{4}{7}.\dfrac{7}{10}.\dfrac{10}{13}.....\dfrac{94}{97}.\dfrac{97}{100}\)
\(=\dfrac{1.4.7.10.....94.97}{4.7.10.13.....97.100}\)
\(=\dfrac{1}{100}\)
Chúc bạn học tốt!
Câu 1:
a) \(-\dfrac{3}{7}-\left(\dfrac{2}{3}-\dfrac{3}{7}\right)=\dfrac{-3}{7}-\dfrac{2}{3}+\dfrac{3}{7}=\dfrac{-2}{3}\)
Câu 2:
b) \(\dfrac{2}{15}:\left(\dfrac{1}{3}\cdot\dfrac{4}{5}-\dfrac{1}{3}\cdot\dfrac{6}{5}\right)=\dfrac{2}{15}:\left[\dfrac{1}{3}\left(\dfrac{4}{5}-\dfrac{6}{5}\right)\right]=\dfrac{2}{15}:\left(\dfrac{1}{3}\cdot\dfrac{-2}{5}\right)=\dfrac{2}{15}:\dfrac{-2}{15}=\dfrac{2}{-2}=-1\)
\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^8}\)
\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}\)
\(3A-A=1-\frac{1}{3^8}\)
\(A=\frac{3280}{6561}\)
\(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2008}}\)
\(3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2007}}\)
\(3B-B=1-\frac{1}{3^{2008}}\)
\(B=\frac{1}{2}-\frac{1}{2.3^{2008}}\)