Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
\(\left(1-\dfrac{3}{4}\right).\left(1-\dfrac{3}{7}\right).\left(1-\dfrac{3}{10}\right).\left(1-\dfrac{3}{13}\right).....\left(1-\dfrac{3}{97}\right).\left(1-\dfrac{3}{100}\right)\)
\(=\dfrac{1}{4}.\dfrac{4}{7}.\dfrac{7}{10}.\dfrac{10}{13}.....\dfrac{94}{97}.\dfrac{97}{100}\)
\(=\dfrac{1.4.7.10.....94.97}{4.7.10.13.....97.100}\)
\(=\dfrac{1}{100}\)
#)Giải :
\(\left(1-\frac{3}{4}\right)x\left(1-\frac{3}{7}\right)x\left(1-\frac{3}{10}\right)x\left(1-\frac{1}{13}\right)x...x\left(1-\frac{3}{100}\right)\)
\(=\frac{1}{4}x\frac{4}{7}x\frac{7}{10}x...x\frac{94}{97}x\frac{97}{100}\)
\(=\frac{1x4x7x...x94x100}{4x7x10x...x97x100}\)
\(=\frac{1}{100}\)
#~Will~be~Pens~#
\(\left(1-\frac{3}{4}\right)\left(1-\frac{3}{7}\right)\left(1-\frac{3}{10}\right)\left(1-\frac{1}{13}\right)...\left(1-\frac{1}{97}\right)\left(1-\frac{3}{100}\right)\)
\(=\frac{1}{4}.\frac{4}{7}.\frac{7}{10}.\frac{10}{13}...\frac{94}{97}.\frac{97}{100}\)
\(=\frac{1}{100}\)
( 1 - 3/4 ) x ( 1 - 3/7 ) x ( 1 - 3/10 ) x ( 1 - 3/13 ) x ......x ( 1 - 3/97 ) x ( 1 - 3/100 ) .
= 1/4 x 4/7 x 7/10 x ... x 97/100 .
Khử đi các số giống nhau .
= 1/100 nha bạn .
1 − 4 3 1 − 7 3 1 − (10 3 ... 1 − 97 3 1 − 100 3 = 4 1 . 7 4 . 10 7 ..... 97 94 . 100 97 = 4.7.10.....97.100 1.4.7.....94.97 = 100 1
\(\left(1-\frac{3}{4}\right)x\left(1-\frac{3}{7}\right)x\left(1-\frac{3}{10}\right)x\left(1-\frac{3}{13}\right)x...x\left(1-\frac{3}{97}\right)x\left(1-\frac{3}{100}\right)\)
\(=\frac{1}{4}x\frac{4}{7}x\frac{7}{10}x\frac{10}{13}x...x\frac{94}{97}x\frac{97}{100}\)
\(=\frac{1}{100}\)
\(\left(1-\frac{3}{4}\right)\times\left(1-\frac{3}{7}\right)\times\left(1-\frac{3}{10}\right)...\times\left(1-\frac{3}{97}\right)\times\left(1-\frac{3}{100}\right)\)
\(=\frac{1}{4}\times\frac{4}{7}\times\frac{7}{10}\times...\times\frac{94}{97}\times\frac{97}{100}\)
\(=\frac{1\times4\times7\times10\times...\times97}{1\times4\times7\times10\times...\times97\times100}\)
\(=\frac{1}{100}\)
Bài 1
a; \(\dfrac{7}{19}\) x \(\dfrac{1}{3}\) + \(\dfrac{7}{19}\) x \(\dfrac{2}{3}\)
= \(\dfrac{7}{19}\) x (\(\dfrac{1}{3}+\dfrac{2}{3}\))
= \(\dfrac{7}{19}\) x 1
= \(\dfrac{7}{19}\)
b; 15 x \(\dfrac{2121}{4343}\) + 15 x \(\dfrac{212121}{434343}\)
= 15 x \(\dfrac{21}{43}\) + 15 x \(\dfrac{21}{43}\)
= 15 x \(\dfrac{21}{43}\) x (1 + 1)
= 15 x \(\dfrac{21}{43}\) x 2
= (15 x 2) x \(\dfrac{21}{43}\)
= 30 x \(\dfrac{21}{43}\)
= \(\dfrac{630}{43}\)
1) (x - 35) - 120 = 0
x - 35 = 120
x = 120 + 35
x = 155
2) 310 - (118 - x) = 217
118 - x = 310 - 217
118 - x = 93
x = 118 - 93
x = 25
3) 156 - (x + 61) = 82
x + 61 = 156 - 82
x + 61 = 74
x = 74 - 61
x = 13
4) 814 - (x - 305) = 712
x - 305 = 814 - 712
x - 305 = 102
x = 102 + 305 = 407
5) 100 - 7 - (x - 5) = 58
x - 5 = 93 - 58
x - 5 = 35
x = 35 + 5 = 40
6) 12(x - 1) : 3 = 43 + 23
4(x - 1) = 72
x - 1 = 18
x = 18 + 1 = 19
7) 24 + 5x = 75 : 73
24 + 5x = 49
5x = 25
x = 25 : 5 = 5
8) 5(x - 1) : 3 = 43 + 23
\(\dfrac{5}{3}\left(x-1\right)=72\)
x - 1 = \(\dfrac{216}{5}\)
x = 221/5
9) 5(x - 4)2 - 7 = 13
5(x - 4)2 = 20
(x - 4)2 = 4
\(\Rightarrow\left[{}\begin{matrix}x-4=2\\x-4=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=6\\x=2\end{matrix}\right.\)
10) (x + 1) + (x + 2) + ... + (x + 30) = 795
=> (x + x + x + ... + x) + (1 + 2 + 3 +...+ 30) = 795 (1)
Đặt A = 1 + 2 + 3 +...+ 30
Số số hạng trong A là: (30 - 1) : 1 + 1 = 30 (số)
Tổng A bằng : (30 + 1).30 : 2 =465
Thay A = 465 vào (1) , ta được:
30x + 465 = 795
=> 30x =330
=> x =11
1: =>x-35=120
=>x=120+35=155
2: =>118-x=310-217=93
=>x=118-93=25
3: =>x+61=156-82=74
=>x=74-61=13
4: =>x-305=814-712=102
=>x=102+305=407
5: =>93-(x-5)=58
=>x-5=35
=>x=40
6: =>4(x-1)=64+8=72
=>x-1=18
=>x=19
7: =>5x+24=49
=>5x=25
=>x=5
8: =>5(x-1):3=4^3+2^3=64+8=72
=>5(x-1)=216
=>x-1=216/5
=>x=221/5
d ( 1-1/2)x(1-1/3)x(1-1/4)x......x(1-1/2018)
= 1/2x2/3x3/4x...x2017/2018
=\(\frac{1x2x3x....x2017}{2x3x4x....x2018}\)
= \(\frac{1}{2018}\)
e , 1+4+7+...+100
= dãy có số số hạng là
(100-1):3+1=34 ( số số hạng)
tổng là : (100+1 ) x 34 : 2 =1717
=>1717
`a)(1-1/2)xx(1-1/3)xx(1-1/4)xx(1-1/5)`
`=1/2xx2/3xx3/4xx4/5`
`=[1xx2xx3xx4]/[2xx3xx4xx5]`
`=1/5`
`b)(1-3/4)xx(1-3/7)xx(1-3/10)xx(1-3/13)xx .... xx(1-3/97)xx(1-3/100)`
`=1/4xx4/7xx7/10xx10/13xx .... xx94/97xx97/100`
`=[1xx4xx7xx10xx...xx94xx97]/[4xx7xx10xx13xx....xx97xx100]`
`=1/100`