Tìm số tự nhiên \(\overline{abcd}\)sao cho số đó \(⋮\)tích của \(\overline{ab}\)và \(\overline{cd}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5:
Vì số cần tìm nhỏ nhất nên ta lần lượt thử chọn với các giá trị số nhỏ nhất.
- Giả sử số tự nhiên có dạng 11111a
=> 111110 + a chia hết cho 1987. Vì 111110 chia 1987 dư 1825
=> a chia 1987 dư 162 ( vô lí - 162 > a).
- Giả sử số tự nhiên có dạng 11111ab
=> 1111100 + ab chia hết cho 1987. Vì 1111100 chia 1987 dư 367=> ab chia 1987 dư 1620 ( vô lí - 1620 > ab)
- Giả sử số tự nhiên có dạng 11111abc
=> 11111000 + abc chia hết cho 1987. Vì 11111000 chia 1987 dư 1683
=> abc chia 1987 dư 304. Mà abc nhỏ nhất
=> abc = 304
Vậy số tự nhiên là 11111304
vì abcd,ab,ac là số nguyên tố nên là số lẻ hay b,c,d lẻ và khác 5. Ta có :
b2 = cd + b - c \(\Rightarrow\)b ( b - 1 ) = cd - c = 10c + d - c = 9c + d \(\ge\)10
\(\Rightarrow\)b \(\ge\)4 \(\Rightarrow\) b = 7 hoặc b = 9
+) b = 7 ta có : 9c + d = 42 \(\Rightarrow\)d \(⋮\)3 \(\Rightarrow\)d = 3 hoặc d = 9
Nếu d = 3 thì c = \(\frac{39}{9}\)( loại )
Nếu d = 9 thì c = \(\frac{33}{9}\)( loại )
+) b = 9 thì 9c + d = 72 \(\Rightarrow\)d = 9 ; c = 7
Mà a7 và a9 là số nguyên tố thì a = 1
Vậy abcd = 1979
Theo đề bài, ta có:
10a+b- (10b+a)=72\(\Leftrightarrow\)9a-9b=72 \(\Leftrightarrow\) a-b = 8 =>a = 8+b
Mà a,b là số tự nhiên <9 và >1 => 8+b <9
=> b = 1, a = 9
Vậy số tự nhiên \(\overline{ab}\)=91
Theo bài ra, ta có: \(\overline{ab}\) - \(\overline{ba}\)
= 10a + b - (10b + a)
= 10a + b - 10b - a
= 9a - 9b = 9(a - b) = 72
\(\Rightarrow\) a - b = 72 : 9 = 8
\(\Rightarrow\) a = 8 + b
Mà a \(\le\) 9 \(\Rightarrow\) 8 + b \(\le\) 9 \(\Rightarrow\) b = 1; a = 9
Vậy \(\overline{ab}\) = 91
Giải:
Vì \(\overline{abcd},\overline{ab}\) và \(\overline{ac}\) là các số nguyên tố
\(\Rightarrow b,c,d\) là các số lẻ khác \(5\)
Ta có:
\(b^2=\overline{cd}+b-c\Leftrightarrow b\left(b-1\right)=\overline{cd}-c\)
\(=10c+d-c=10c-c+d=9c+d\)
Do \(9c+d\ge10\) nên \(b\left(b-1\right)\ge10\)
\(\Rightarrow b\ge4\). Do đó \(\left[{}\begin{matrix}b=7\\b=9\end{matrix}\right.\)
Ta có các trường hợp sau:
\(*)\) Nếu \(b=7\) ta có:
\(9c+d=42⋮3\Rightarrow d⋮3\) \(\Rightarrow\left[{}\begin{matrix}d=3\\d=9\end{matrix}\right.\)
Với \(d=3\Rightarrow9c=39\Rightarrow\) Không tồn tại \(c\in N\)
Với \(d=9\Rightarrow9c+d⋮9\) còn \(42\) \(⋮̸\) \(9\) (loại)
\(*)\) Nếu \(b=9\) ta có:
\(9c+d=72⋮9\Rightarrow d⋮9\Rightarrow d=9\)
\(9c+9=72\Rightarrow9c=63\Rightarrow c=7\)
\(\overline{ab}=\overline{a9}\) là số nguyên tố \(\Rightarrow a\ne3;6;9;4\)
\(\overline{ac}=\overline{a7}\) là số nguyên tố \(\Rightarrow a\ne2;5;7;8\)
Mặt khác \(a\ne0\Rightarrow a=1\)
Vậy số cần tìm là \(1979\) (thỏa mãn số nguyên tố)
Ta có : \(\overline{ab}-\overline{ba}=72\Rightarrow\left(10a+b\right)-\left(10b+a\right)=72\)
\(\Rightarrow10a+b-10b-a=72\)
\(\Rightarrow10a-10b+b-a=72\)
\(\Rightarrow10\left(a-b\right)-a+b=72\)
\(\Rightarrow10\left(a-b\right)-\left(a-b\right)=72\)
\(\Rightarrow\left(10-1\right)\left(a-b\right)=72\Rightarrow9\left(a-b\right)=72\)
\(\Rightarrow a-b=72\div9\Rightarrow a-b=8\)
Vì : a,b là chữ số \(\Rightarrow0< a,b\le9\)
Mà : a - b = 8 \(\Rightarrow\left\{{}\begin{matrix}a=9\\b=1\end{matrix}\right.\)
Vậy số tự nhiên \(\overline{ab}\) cần tìm là 91
Đặt ab = m , cd = n
Ta có 10m + n chia hết cho mn
=>n chia hết cho m và 10m chia hết cho n
S đó tìm hết
Bài giải
Ta có :
\(\overline{abcd}⋮\overline{ab.\overline{cd}}\) (1)
\(\Rightarrow100.\overline{ab}+\overline{cd}⋮\overline{ab}.\overline{cd}\) (2)
\(\Rightarrow\overline{cd}⋮\overline{ab}\)
Đặt \(\overline{cd}=k.ab\)với \(k\inℕ,1\le k\le9\) (3)
Thay vào (2) :
\(100.\overline{ab}+k.\overline{ab}⋮k.\overline{ab}.\overline{ab}\)
\(\Rightarrow100+k⋮k.\overline{ab}\) (4)
\(\Rightarrow100⋮k\) (5)
Từ (3) và (5) :
\(\Rightarrow k\in\left\{1;2;4;5\right\}\)
Với k=1 ,thay vào (4) \(⋮101⋮\overline{ab}\) (loại)
Với k=2 thay vào (4) :102 \(⋮2.\overline{ab}\Rightarrow51⋮\overline{ab}\).Khi đó:
\(\overline{ab}=17\) và \(\overline{cd}=34\) ,hoặc \(\overline{ab}=51\)và \(\overline{cd}=102\)(loại)
Với k=4 thay vào (4) :104 \(⋮\)4.ab hoặc ab = 26 và cd= 104 (loại)
Với k=5 thay vào (4) :105 \(⋮\)5 .ab \(\Rightarrow\)21\(⋮\)ab .Khi đó :
\(\overline{ab}=21\)và \(\overline{cd}=105\)(loại)
KL : Có hai đáp số : 1734 và 1352