K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2016

Theo đề bài, ta có:

10a+b- (10b+a)=72\(\Leftrightarrow\)9a-9b=72 \(\Leftrightarrow\) a-b = 8 =>a = 8+b

Mà a,b là số tự nhiên <9 và >1 => 8+b <9

=> b = 1, a = 9

Vậy số tự nhiên \(\overline{ab}\)=91

4 tháng 1 2020

Theo bài ra, ta có: \(\overline{ab}\) - \(\overline{ba}\)

= 10a + b - (10b + a)

= 10a + b - 10b - a

= 9a - 9b = 9(a - b) = 72

\(\Rightarrow\) a - b = 72 : 9 = 8

\(\Rightarrow\) a = 8 + b

Mà a \(\le\) 9 \(\Rightarrow\) 8 + b \(\le\) 9 \(\Rightarrow\) b = 1; a = 9

Vậy \(\overline{ab}\) = 91

18 tháng 5 2017

Ta có : \(\overline{ab}-\overline{ba}=72\Rightarrow\left(10a+b\right)-\left(10b+a\right)=72\)

\(\Rightarrow10a+b-10b-a=72\)

\(\Rightarrow10a-10b+b-a=72\)

\(\Rightarrow10\left(a-b\right)-a+b=72\)

\(\Rightarrow10\left(a-b\right)-\left(a-b\right)=72\)

\(\Rightarrow\left(10-1\right)\left(a-b\right)=72\Rightarrow9\left(a-b\right)=72\)

\(\Rightarrow a-b=72\div9\Rightarrow a-b=8\)

Vì : a,b là chữ số \(\Rightarrow0< a,b\le9\)

Mà : a - b = 8 \(\Rightarrow\left\{{}\begin{matrix}a=9\\b=1\end{matrix}\right.\)

Vậy số tự nhiên \(\overline{ab}\) cần tìm là 91

Ta có : \(\overline{ab}-\overline{ba}=\) (10a +b) \(-\) (10b +a) \(=\) 10a + b \(-\) 10b \(-\) a \(=\) 9a \(-\) 9b 

\(=\) 9(a\(-\)b) \(=\) 32(a\(-\)b)

=> a, b ∉ {1;2;3;4;5;6;7;8;9} => 1 ≤ a- b ≤ 8 

Để \(\overline{ab}-\)\(\overline{ba}\) là số chính phương thì a – b = 1; 4

+) a – b = 1 (mà a > b) ta có các số \(\overline{ab}\) là : 98 ; 87 ; 76; 65; 54 ; 43; 32; 21

\(\overline{ab}\) là số nguyên tố nên chỉ có số 43 thoả mãn

+) a – b = 4 (mà a > b) ta có các số \(\overline{ab}\) là : 95 ; 84 ; 73; 62; 51

\(\overline{ab}\) là số nguyên tố nên chỉ có số 73 thoả mãn

Vậy có hai số thoả mãn điều kiện bài toán là 43 và 73

30 tháng 5 2018

Đặt ab = m , cd = n 

Ta có 10m + n chia hết cho mn

=>n chia hết cho m và 10m chia hết cho n

S đó tìm hết 

30 tháng 5 2018

Bài giải

Ta có :

\(\overline{abcd}⋮\overline{ab.\overline{cd}}\)                      (1)

\(\Rightarrow100.\overline{ab}+\overline{cd}⋮\overline{ab}.\overline{cd}\)  (2)                       

\(\Rightarrow\overline{cd}⋮\overline{ab}\)

Đặt \(\overline{cd}=k.ab\)với \(k\inℕ,1\le k\le9\) (3)

 Thay vào (2) :

\(100.\overline{ab}+k.\overline{ab}⋮k.\overline{ab}.\overline{ab}\)

\(\Rightarrow100+k⋮k.\overline{ab}\) (4)

\(\Rightarrow100⋮k\)                 (5)

Từ (3) và (5) :

\(\Rightarrow k\in\left\{1;2;4;5\right\}\)

Với k=1 ,thay vào (4) \(⋮101⋮\overline{ab}\) (loại)

Với k=2 thay vào (4) :102 \(⋮2.\overline{ab}\Rightarrow51⋮\overline{ab}\).Khi đó:

\(\overline{ab}=17\) và \(\overline{cd}=34\) ,hoặc \(\overline{ab}=51\)và \(\overline{cd}=102\)(loại)

Với k=4 thay vào (4) :104 \(⋮\)4.ab  hoặc ab = 26 và cd= 104 (loại)

Với k=5 thay vào (4) :105 \(⋮\)5 .ab \(\Rightarrow\)21\(⋮\)ab .Khi đó :

                                 \(\overline{ab}=21\)và \(\overline{cd}=105\)(loại)

KL : Có hai đáp số : 1734 và 1352

16 tháng 3 2019

Bạn tham khảo link này nhé !

Câu hỏi của Nguyễn Triệu Yến Nhi - Toán lớp 6 - Học toán với OlineMath.

Câu hỏi của Hatsune Miku - Toán lớp 6 - Học toán với OnlineMath.

22 tháng 8 2023

1) \(3^x+3^{x+1}+3^{x+2}=351\)

\(\Rightarrow3^x\left(1+3^1+3^2\right)=351\)

\(\Rightarrow3^x.13=351\)

\(\Rightarrow3^x=27\)

\(\Rightarrow3^x=3^3\)

\(\Rightarrow x=3\)

2) \(C=2+2^2+2^3+2^4+...+2^{97}+2^{98}+2^{99}+2^{100}\)

\(\Rightarrow C=\left(2+2^2+2^3+2^4\right)+2^4\left(2+2^2+2^3+2^4\right)...+2^{96}\left(2+2^2+2^3+2^4\right)\)

\(\Rightarrow C=30+2^4.30...+2^{96}.30\)

\(\Rightarrow C=\left(1+2^4+...+2^{96}\right).30⋮30\)

mà \(30=5.6\)

\(\Rightarrow C⋮5\left(dpcm\right)\)

22 tháng 8 2023

1,

Có \(3^x\)\(3^{x+1}\) + \(3^{x+2}\) = \(351\)

=> \(3^x\) + \(3^x\).\(3\) + \(3^x\).\(9\) = \(351\)

=> \(3^x\).\(13\) = \(351\)

=> \(3^x\) = \(27\)

=> \(x\) = \(3\)

2,

C = \(2\) + \(2^2\) + \(2^3\) + ... + \(2^{100}\)

2C = \(2^2\) + \(2^3\) + \(2^4\) + ... + \(2^{101}\)

2C - C = \(2^{101}\) - \(2\)

C = \(2^{101}\) - \(2\)

C = \(2\).\(\left(2^{100}-1\right)\)

C = 2.\(\left(\left(2^5\right)^{20}-1^{20}\right)\)

Có \(2^5\) \(-1\) \(⋮\) 5

=> \(\left(\left(2^5\right)^{20}-1^{20}\right)\) \(⋮\) 5

=> C \(⋮\) 5

3,

Xét \(\overline{abcdeg}\)

\(\overline{ab}\).\(10000\) + \(\overline{cd}\).\(100\) + \(\overline{eg}\)

\(\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\) + \(9.\left(1111.\overline{ab}+11.\overline{cd}\right)\)

\(\left\{{}\begin{matrix}9.\left(1111.\overline{ab}+11.\overline{cd}\right)⋮9\left(1111.\overline{ab}+11.\overline{cd}\inℕ^∗\right)\\\overline{ab}+\overline{cd}+\overline{eg}⋮9\end{matrix}\right.\)

=> \(\overline{abcdeg}⋮9\)

4,

S = \(3^0+3^2+3^4+...+3^{2002}\)

9S = \(3^2+3^4+3^6+...+3^{2004}\)

9S - S = \(3^2+3^4+3^6+...+3^{2004}\) - (\(3^0+3^2+3^4+...+3^{2002}\))

8S = \(3^{2004}-1\)

=> 8S \(< 3^{2004}\)

30 tháng 9 2023

loading...

Ta có: \(\overline{ab}^2-\overline{ba}^2=1980\)

\(\Rightarrow\left(ab-ba\right)\left(ab+ba\right)=1980\)

\(\Rightarrow99\left(a+b\right)\left(a-b\right)=1980\)

\(\Rightarrow\left(a+b\right)\left(a-b\right)=20\)

mà a + b và a - b đều là số chẵn

\(\Rightarrow\left\{{}\begin{matrix}a+b=10\\a-b=2\end{matrix}\right.\Rightarrow a=6,b=4\)

Vậy số cần tìm là 64

17 tháng 5 2018

@Đời về cơ bản là buồn... cười!!! chấp nhận đoạn đầu,nhưng đoạn tách sai ngay từ bản chất. \(\overline{ab}\ne ab\)

\(\overline{ab}^2-\overline{ba}^2=1980\Leftrightarrow\left(ab-ba\right)\left(ab+ba\right)=1980\) (1)

\(\Rightarrow\left(10a+b-10b-a\right)\left(10a+b+10b+a\right)=1980\)

\(\Rightarrow\left(9a-9b\right)\left(11a+11b\right)=1980\)

\(\Rightarrow99\left(a-b\right)\left(a+b\right)=1980\Leftrightarrow\left(a-b\right)\left(a+b\right)=20\) . Tới đây xét ước dương của 20 là ổn r.