tính hệ số góc của các đường thẳng sau
f(x)=-3x+2:y=4x+17;f(x)=\(\dfrac{17}{18}x-\dfrac{7}{8}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hệ số gốc là y=-3x+2 là -3
hệ số gốc của y=4x+17 là 4
a:
Vẽ đường thẳng y=-3x-3
y=-3-3x
=>3x+y+3=0
Khoảng cách từ O đến đường thẳng y=-3x-3 là:
\(\dfrac{\left|0\cdot3+0\cdot1+3\right|}{\sqrt{3^2+1^2}}=\dfrac{3}{\sqrt{10}}\)
b:
Vẽ đường thẳng y=x
y=x
=>x-y=0
Khoảng cách từ O(0;0) đến đường thẳng y=x là:
\(\dfrac{\left|0\cdot1+0\cdot\left(-1\right)+0\right|}{\sqrt{1^2+\left(-1\right)^2}}=\dfrac{0}{\sqrt{2}}=0\)
c:
Vẽ đồ thị y=-x
y=-x
=>x+y=0
Khoảng cách từ O(0;0) đến đường thẳng y=-x là:
\(\dfrac{\left|0\cdot1+0\cdot1+0\right|}{\sqrt{1^2+1^2}}=0\)
d:
Vẽ đồ thị hàm số y=1/2x
y=1/2x
=>1/2x-y=0
Khoảng cách từ O(0;0) đến đường thẳng y=1/2x là:
\(\dfrac{\left|0\cdot\dfrac{1}{2}+0\cdot\left(-1\right)+0\right|}{\sqrt{\left(\dfrac{1}{2}\right)^2+\left(-1\right)^2}}=\dfrac{0}{\sqrt{\dfrac{1}{4}+1}}=0\)
a) Đường thẳng \(y=3x+6\) có hệ số góc \(a=3\Rightarrow\widehat{\left(Ox;d\right)=72^o\Rightarrow góc.nhọn}\)
b) Đường thẳng \(y=-4x+1\) có hệ số góc \(a=-4\Rightarrow\widehat{\left(Ox;d\right)=-76^o\Rightarrow góc.nhọn}\)
c) Đường thẳng \(y=-3x-6\) có hệ số góc \(a=-3\Rightarrow\widehat{\left(Ox;d\right)=-71^o\Rightarrow góc.nhọn}\)
a) Đường thẳng \(y = 3x + 6\) có hệ số góc là \(a = 3 > 0\) nên góc tạo bởi đường thẳng và trục \(Ox\) là góc nhọn.
b) Đường thẳng \(y = - 4x + 1\) có hệ số góc là \(a = - 4 < 0\) nên góc tạo bởi đường thẳng và trục \(Ox\) là tù.
c) Đường thẳng \(y = - 3x - 6\) có hệ số góc là \(a = - 3 < 0\) nên góc tạo bởi đường thẳng và trục \(Ox\) là tù.
Đường thẳng (d) có dạng \(y=kx+m\)
\(A\left(0;2\right)\in\left(d\right)\Rightarrow m=2\)
\(\Rightarrow y=kx+2\left(d\right)\)
\(\left(d\right)\) cắt \(\left(P\right)\) tại hai điểm phân biệt khi phương trình \(x^2+\left(4-k\right)x+1=0\) có hai nghiệm phân biệt
\(\Leftrightarrow\Delta=\left(k-2\right)\left(k-6\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}k>6\\k< 2\end{matrix}\right.\)
Ta có \(x_1=\dfrac{k-4+\sqrt{k^2-8k+12}}{2}\Rightarrow y_1=\dfrac{k^2-4k+4+k\sqrt{k^2-8k+12}}{2}\)
\(\Rightarrow E\left(\dfrac{k-4+\sqrt{k^2-8k+12}}{2};\dfrac{k^2-4k+4+k\sqrt{k^2-8k+12}}{2}\right)\)
\(x_1=\dfrac{k-4-\sqrt{k^2-8k+12}}{2}\Rightarrow y_1=\dfrac{k^2-4k+4-k\sqrt{k^2-8k+12}}{2}\)
\(\Rightarrow F\left(\dfrac{k-4-\sqrt{k^2-8k+12}}{2};\dfrac{k^2-4k+4-k\sqrt{k^2-8k+12}}{2}\right)\)
Tọa độ trung điểm \(I\left(\dfrac{k-4}{2};\dfrac{k^2-4k+4}{2}\right)\)
\(x-2y+3=0\left(d'\right)\)
\(I\left(\dfrac{k-4}{2};\dfrac{k^2-4k+4}{2}\right)\in\left(d'\right)\Rightarrow\dfrac{k-4}{2}-\left(k^2-4k+4\right)+3=0\)
\(\Leftrightarrow2k^2-9k+6=0\)
\(\Leftrightarrow\left[{}\begin{matrix}k=\dfrac{9+\sqrt{33}}{2}\left(l\right)\\k=\dfrac{9-\sqrt{33}}{2}\left(tm\right)\end{matrix}\right.\)
\(\Leftrightarrow k=\dfrac{9-\sqrt{33}}{2}\)
P/s: Không biết đúng kh.
a) \(\sqrt{4x^2-4x+9}=3\)
Vì \(4x^2-4x+9=\left(2x-1\right)^2+8>0\)( Với mọi x )
Nên \(\sqrt{4x^2-4x+9}=3\)
⇔\(4x^2-4x+9=9\)
⇔\(4x^2-4x=0\)
⇔\(4x\left(x-1\right)=0\)
⇔\(\left[{}\begin{matrix}4x=0\\x-1=0\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)là nghiệm
Lời giải:
Hệ số góc của đường thẳng \(y=ax+b\) chính bằng $a$
Vậy:
Hsg của đường thẳng \(y=-3x+2\) là $-3$
Hsg của đường thẳng \(y=4x+17\) là $4$
Hsg của đường thẳng \(y=\frac{17}{18}x-\frac{7}{8}\) là \(\frac{17}{18}\)