Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Hệ số góc của đường thẳng \(y=ax+b\) chính bằng $a$
Vậy:
Hsg của đường thẳng \(y=-3x+2\) là $-3$
Hsg của đường thẳng \(y=4x+17\) là $4$
Hsg của đường thẳng \(y=\frac{17}{18}x-\frac{7}{8}\) là \(\frac{17}{18}\)
a, để (d) // (d1) thì \(\left\{{}\begin{matrix}-m=3\\2m-3\ne-m+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-3\\m\ne\dfrac{5}{3}\end{matrix}\right.\Leftrightarrow m=-3\)
b, để (d) ⊥ (d1) thì \(-m.3=-1\Rightarrow-m=-\dfrac{1}{3}\Rightarrow m=\dfrac{1}{3}\)
a) 3x² - 4x + 1 = 0
a = 3; b = -4; c = 1
∆ = b² - 4ac = (-4)² - 4.3.1 = 4 > 0
Phương trình có hai nghiệm phân biệt:
x₁ = (-b + √∆)/2a = [-(-4) + 2]/(2.3) = 1
x₂ = (-b - √∆)/2a = [-(-4) - 2]/(2.3) = 1/3
Vậy S = {1/3; 1}
b) -4x² + 4x + 1 = 0
a = -4; b = 4; c = 1
∆ = b² - 4ac = 4² - 4.(-4).1 = 32 > 0
Phương trình có hai nghiệm phân biệt:
x₁ = (-b + √∆)/2a = (-4 + 4√2)/[2.(-4)] = (1 - √2)/2
x₂ = (-b - √∆)/2a = (-4 - 4√2)/[2.(-4)] = (1 + √2)/2
Vậy S = {(1 - √2)/2; (1 + √2)/2}
d) x² - 8x + 2 = 0
a = 1; b = -√8; c = 2
∆ = b² - 4ac = 8 - 8 = 0
Phương trình có nghiệm kép:
x₁ = x₂ = -b/2a = √8/2 = √2
Vậy S = {√2}
e) x² - 6x + 5 = 0
a = 1; b = -6; c = 5
∆ = b² - 4ac = 36 - 20 = 16 > 0
Phương trình có hai nghiệm phân biệt:
x₁ = (-b + √∆)/2a = (6 + 4)/2 = 5
x₂ = (-b - √∆)/2a = (6 - 4)/2 = 1
Vậy S = {1; 5}
Bạn nên viết đề bằng công thức toán để mọi người dễ đọc hơn nhé (nhấn vào biểu tượng $\sum$ góc trái khung soạn thảo)
Đường thẳng \(y=ax+b\) có hệ số góc bằng \(a.\)
Do vậy, đường thẳng \(y=\frac{3x-5}{2}\to y=\frac{3}{2}x-\frac{5}{2}\) có hệ số góc là \(a=\frac{3}{2}.\)
đường thẳng \(y=\frac{3-\sqrt{3}x}{5}=-\frac{\sqrt{3}}{5}x+\frac{3}{5}\) có hệ số góc là \(a=-\frac{\sqrt{3}}{5}.\)
2:
a: Thay x=0 và y=-3 vào (d), ta được:
3*0+b=-3
=>b=-3
b: Thay x=-4 và y=0 vào (d), ta được:
3*(-4)+b=0
=>b=12
c: Thay x=-1 và y=2 vào (d), ta được:
3*(-1)+b=2
=>b-3=2
=>b=5
hệ số gốc là y=-3x+2 là -3
hệ số gốc của y=4x+17 là 4