Cho tam giác ABC có AB=AC.M thuộc AB;N thuộc AC saocho AM=An.D,E lần lượt là trung điểm của NM,BC.
Chứng minh:A,D,E thẳng hàng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Câu b) chứng minh được thì câu a) mới chứng minh được:
b) *Trên tia đối của tia MA, lấy điểm O sao cho MA=MO.
Xét ▲ABM và ▲OCM có:
AM=OM (gt)
\(\widehat{AMB}=\widehat{OMC}\)(đối đỉnh)
BM=CM(M là trung điểm BC)
=>▲ABM=▲OCM (c-g-c)
=>AB=OC (2 cạnh tương ứng).
\(\widehat{ABM}=\widehat{OCM}\)(2 góc tương ứng).
- Mà AB<AC (gt)
=>AC>OC
Xét ▲ACO có:
AC>OC (cmt)
=>\(\widehat{AOC}>\widehat{OAC}\)(quan hệ giữa cạnh và góc đối diện trong tam giác).
Mà\(\widehat{AOC}=\widehat{OAB}\)(cmt)
=>\(\widehat{OAB}>\widehat{OAC}\).
a) - Xét tam giác ABC có:
AB<AC (gt)
=>\(\widehat{ACB}< \widehat{ABC}\)(quan hệ giữa cạnh và góc đối diện trong tam giác).
- Ta có: \(\widehat{AMB}+\widehat{ABM}+\widehat{BAM}=180^0\)(tổng 3 góc trong ▲ABM)
\(\widehat{AMC}+\widehat{ACM}+\widehat{CAM}=180^0\)(tổng 3 góc trong ▲ACM)
Mà \(\widehat{BAM}>\widehat{CAM}\)(cmt) ; \(\widehat{ABM}>\widehat{ACM}\)(cmt)
=>\(\widehat{AMB}< \widehat{AMC}\)
\(\Delta ADM,\Delta ADN\) có chung cạnh AD,AM = AN (gt),DM = DN (vì D là trung điểm MN) => \(\Delta ADM=\Delta ADN\) (c.c.c)
=> góc MAD = góc NAD (2 góc tương ứng) => AD là phân giác góc BAC (1)
\(\Delta AEB,\Delta AEC\)có chung cạnh AE,AB = AC (gt),EB = EC (vì E là trung điểm BC) => \(\Delta ADM=\Delta ADN\)(c.c.c)
=> góc BAE = góc CAE (2 góc tương ứng) => AE là phân giác góc BAC (2)
Từ (1) và (2),ta có AD,AE trùng nhau,tức là A,D,E thẳng hàng.
Xét tam giác ABC có AB = AC
=> tam giác ABC cân tại A
=> góc ABC = góc ACB
Xét tam giác ABM và tam giác ACM có
AB = AC (gt)
góc ABC = góc ACB (cmt)
MB = MC (gt)
Vậy tam giác ABM = tam giác ACM (c.g.c)
=> góc AMB = góc AMC (2 góc tương ứng)
mà góc AMB + góc AMC = 180 độ (kề bù)
nên góc AMB = AMC = 180 độ/2 = 90 độ
=> AM | BC