Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lý Pytago lên các tam giác vuông
+) \(\Delta\)AOI vuông tại I và \(\Delta\) AOM vuông tại M
=> AI2+IO2=AO2=AM2+OM2
+) \(\Delta\)BOI vuông tại I và \(\Delta\)BOH vuông tại H
=> BI2+IO2=BO2=BH2+CH2
+) \(\Delta\)COM vuông tại M và \(\Delta\)COH vuông tại H
=> CM2+MO2=CO2=CH2+OH2
\(\Rightarrow\hept{\begin{cases}AI^2+IO^2=AM^2+CM^2\left(1\right)\\BH^2+CH^2=BI^2+IO^2\left(2\right)\\CM^2+MO^2=CH^2+OH^2\left(3\right)\end{cases}}\)
Cộng vế với vế của (1)(2)(3)
\(\Rightarrow AI^2+BH^2+CM^2+\left(IO^2+CH^2+MO^2\right)=\left(IO^2+OH^2+MO^2\right)+AM^2+BI^2+AH^2\)
\(\Rightarrow AI^2+BH^2+CM^2=AM^2+CH^2+CH^2\)hay \(AB^2+BH^2+CM^2=AM^2+CH^2+BI^2\left(đpcm\right)\)
a: Xét ΔBAH vuông tại A và ΔBMH vuông tại M có
BH chung
góc ABH=góc MBH
=>ΔBAH=ΔBMH
b: BA=BM
HA=HM
=>BH là trung trực của AM
=>BH vuông góc AM
c: Xét ΔBMN vuông tại M và ΔBAC vuông tại A có
BM=BA
góc MBN chung
=>ΔMBN=ΔABC
=>BN=BC
Xét ΔBNC có BA/BN=BM/BC
nên AM//NC
a) Xét △AMB và △AMC có :
AB = AC (gt)
^ABC = ^ACB (gt)
^BAM = ^CAM (gt)
\(\Rightarrow\)△AMB = △AMC (g.c.g)
b) Xét △ABH và △ACK có :
^KAH chung
AB = AC (gt)
\(\Rightarrow\)△ABH - △ACK (cạnh huyền-góc nhọn)
\(\Rightarrow\)BH = CK (Cặp cạnh tương ứng)