K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2020

A B C O M I H

Áp dụng định lý Pytago lên các tam giác vuông

+) \(\Delta\)AOI vuông tại I và \(\Delta\) AOM vuông tại M

=> AI2+IO2=AO2=AM2+OM2

+) \(\Delta\)BOI vuông tại I và \(\Delta\)BOH vuông tại H

=> BI2+IO2=BO2=BH2+CH2

+) \(\Delta\)COM vuông tại M và \(\Delta\)COH vuông tại H

=> CM2+MO2=CO2=CH2+OH2

\(\Rightarrow\hept{\begin{cases}AI^2+IO^2=AM^2+CM^2\left(1\right)\\BH^2+CH^2=BI^2+IO^2\left(2\right)\\CM^2+MO^2=CH^2+OH^2\left(3\right)\end{cases}}\)

Cộng vế với vế của (1)(2)(3)

\(\Rightarrow AI^2+BH^2+CM^2+\left(IO^2+CH^2+MO^2\right)=\left(IO^2+OH^2+MO^2\right)+AM^2+BI^2+AH^2\)

\(\Rightarrow AI^2+BH^2+CM^2=AM^2+CH^2+CH^2\)hay \(AB^2+BH^2+CM^2=AM^2+CH^2+BI^2\left(đpcm\right)\)

a: Xét ΔBAH vuông tại A và ΔBMH vuông tại M có

BH chung

góc ABH=góc MBH

=>ΔBAH=ΔBMH

b: BA=BM

HA=HM

=>BH là trung trực của AM

=>BH vuông góc AM

c: Xét ΔBMN vuông tại M và ΔBAC vuông tại A có

BM=BA

góc MBN chung

=>ΔMBN=ΔABC

=>BN=BC

Xét ΔBNC có BA/BN=BM/BC

nên AM//NC

27 tháng 12 2021
Giúp mình bài này đi mà :
Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM  ?Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH...
Đọc tiếp

Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM  ?

Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH bằng tam giác MBH, tam giác ACE= tam giác AKE?

Bài 3: Cho tam giác ABC vuông tại C có góc A = 60* và đường phân gác của góc BAC cắt BC tại E. Kẻ EK vuông góc AB tại K (K thuộc AB).  Kẻ BD vuông góc với AE tại D (D thuộc AE). Chứng minh tam giác ACE = tam giác AKE

Bài 4: Cho tam giác ABC vuông tại A có đường phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc BC tại H (H thuộc BC). Chứng minh tam giác ABE = tam giác HBE ?

0
5 tháng 3 2020

A B C M H K

a) Xét △AMB và △AMC có :

           AB = AC (gt)

           ^ABC = ^ACB (gt)

           ^BAM = ^CAM (gt)

\(\Rightarrow\)△AMB = △AMC (g.c.g)

b) Xét △ABH và △ACK có :

           ^KAH chung

           AB = AC (gt)

\(\Rightarrow\)△ABH - △ACK  (cạnh huyền-góc nhọn)

\(\Rightarrow\)BH = CK (Cặp cạnh tương ứng)