K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔABM và ΔDCM có

MA=MD(gt)

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

MB=MC(M là trung điểm của BC)

Do đó: ΔABM=ΔDCM(c-g-c)

Suy ra: AB=DC(hai cạnh tương ứng)

Ta có: ΔABM=ΔDCM(cmt)

nên \(\widehat{ABM}=\widehat{DCM}\)(hai góc tương ứng)

mà \(\widehat{ABM}\) và \(\widehat{DCM}\) là hai góc ở vị trí so le trong

nên AB//CD(Dấu hiệu nhận biết hai đường thẳng song song)

b) Xét ΔAHM vuông tại H và ΔDKM vuông tại K có

MA=MD(gt)

\(\widehat{AMH}=\widehat{DMK}\)(hai góc đối đỉnh)

Do đó: ΔAHM=ΔDKM(cạnh huyền-góc nhọn)

Suy ra: AH=DK(hai cạnh tương ứng)

c)

Ta có: MA=MD(gt)

mà A,M,D thẳng hàng(gt)

nên M là trung điểm của AD

Xét ΔAND có 

H là trung điểm của AN(gt)

M là trung điểm của AD(cmt)

Do đó: HM là đường trung bình của ΔAND(Định nghĩa đường trung bình của tam giác)

\(\Leftrightarrow\)HM//ND và \(HM=\dfrac{ND}{2}\)(Định lí 2 về đường trung bình của tam giác)

Ta có: HM//ND(cmt)

mà \(B\in HM\)(gt)

và \(C\in HM\)(gt)

nên ND//BC(đpcm)

d) Xét ΔAHK vuông tại H có AK là cạnh huyền(AK là cạnh đối diện với góc vuông AHK)

nên AK là cạnh lớn nhất trong ΔAHK(Định lí)

hay AK>AH

mà AH=HN(H là trung điểm của AN)

nên AK>HN(đpcm)

18 tháng 11 2023

a: Xét ΔMHB vuông tại H và ΔMKC vuông tại K có

MB=MC

\(\widehat{HMB}=\widehat{KMC}\)(hai góc đối đỉnh)

Do đó: ΔMHB=ΔMKC

=>BH=CK 

b: BH\(\perp\)AI

CK\(\perp\)AI

Do đó: BH//CK

=>BE//CF

ΔMHB=ΔMKC

=>MH=MK

=>M là trung điểm của HK

Xét tứ giác ABIC có

M là trung điểm chung của AI và BC

=>ABIC là hình bình hành

=>BI//AC

=>BF//CE

Xét tứ giác BECF có

BE//CF

EC//BF

Do đó: BECF là hình bình hành

=>BE=CF

BH+HE=BE

CK+KF=CF

mà BE=CF và BH=CK

nên HE=KF

Xét tứ giác EHFK có

EH//FK

EH=FK

Do đó: EHFK là hình bình hành

=>EF cắt HK tại trung điểm của mỗi đường

mà M là trung điểm của HK

nên M là trung điểm của EF

=>E,M,F thẳng hàng

15 tháng 7 2021

AB=AM sửa lại là AB=AC nha

#\(N\)

`a,` Xét Tam giác `AMB` và Tam giác `CME` có:

`AM = ME (g``t)`

\(\widehat{AMB}=\widehat{CME}\) `(2` góc đối đỉnh `)`

`MB = MC (g``t)`

`=>` Tam giác `AMB =` Tam giác `CME (c-g-c)`

`b,` Vì Tam giác `AMB =` Tam giác `CME (a)`

`-> AB = CE (2` cạnh tương ứng `)`

Xét Tam giác `ABH` và Tam giác `DBH` có:

`HA = HD (g``t)`

\(\widehat{BHA}=\widehat{BHD}=90^0\) 

`BH` chung

`=>` Tam giác `ABH =` Tam giác `DBH (c-g-c)`

`=> AB = BD (2` cạnh tương ứng `)`

Mà `AB = CE -> BD = CE`

`c,` Xét Tam giác `AMH` và Tam giác `DMH` có:

`HA = HD (g``t)`

\(\widehat{AHM}=\widehat{DHM}=90^0\)  

`HM` chung

`=>` Tam giác `AMH =` Tam giác `DMH (c-g-c)`

`=> AM = DM (2` cạnh tương ứng `)`

Xét Tam giác `AMD` có: `AM = DM`

`->` Tam giác `AMD` là tam giác cân.

 

loading...

Mình bổ sung thêm hình ạ ._. nãy k sửa kịp á.

14 tháng 12 2016

bn xem lại cái đề ik khó hiểu wa r điểm O ở đâu lọt zô z?

15 tháng 12 2016

mk chép nhầm sr nha để mk chép lại r gử cho