K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2016

 Do ABCD là hình chữ nhật => CD = AB = 13 cm và BD = AC 
Áp dụng định lí Pi-ta-go vào tam giác vuông DHC có: 
HC^2 = CD^2 - DH^2 = 13^2 - 5^2 = 12^2 => HC = 12 cm 
Áp dụng hệ thức lượng vào tam giác vuông ACD có: 
CD^2 = HC.AC => AC = CD^2/HC = 13^2/12 = 169/12 cm 
Vậy BD = AC = 169/12 cm.

27 tháng 6 2018

A B C D H 13 5 13

Theo đinh lý Pytago trong tam giác HCD có:

\(HC^2+HD^2=CD^2\)

\(\Rightarrow HC=\sqrt{13^2-5^2}=12\)

Lại có: \(CD^2=HC.AC\)

\(\Rightarrow13^2=12.AC\)

\(\Rightarrow AC=\frac{169}{12}\approx14,1\)

\(\Rightarrow BD\approx14,1\)(cm)

28 tháng 10 2021

Giải như ngu

 

18 tháng 10 2015

ta có tam giác DHC đồng dạng với tam giác ADC 
==> DC.AD = AC.DH 
==> sqr(DC.AD) = SQR(AC.DH) 
mà AD^2 = AC^2 - DC^2 
==> 169( AC^2 - 169) = 25.AC^2 
=> AC= 169/12

15 tháng 7 2018

Xét tam giác DHC vuông tại H

\(\Rightarrow HC=\sqrt{DC^2-DH^2}=12\left(cm\right)\)

Xét tam giác ADC vuông tại D đường cao DH

\(\Rightarrow AH=\dfrac{DH^2}{HC}=\dfrac{25}{12}\)

\(\Rightarrow AC=AH+HC=\dfrac{169}{12}\)(cm)

\(\Rightarrow BD=\dfrac{169}{12}\)(cm)

14 tháng 10 2021

a: Ta có: AD//BC

AC\(\perp\)AD

Do đó: AC\(\perp\)BC

Xét ΔBAK vuông tại A có AC là đường cao ứng với cạnh huyền BK, ta được:

\(CB\cdot CK=AC^2\left(1\right)\)

Xét ΔADC vuông tại A có AH là đường cao ứng với cạnh huyền CD,ta được:

\(CH\cdot CD=AC^2\left(2\right)\)

Từ (1) và(2) suy ra \(CB\cdot CK=CH\cdot CD\)

30 tháng 1 2018

trả lời nhanh hộ mình với

mình đang gấp lắm

NV
6 tháng 7 2021

Pitago tam giác vuông ACD:

\(AC=\sqrt{AD^2+CD^2}=\sqrt{AD^2+AB^2}=20\)

Hệ thức lượng tam giác vuông ABC với đường cao BH:

\(AB^2=AH.AC\Rightarrow AH=\dfrac{AB^2}{AC}=\dfrac{64}{5}\)

\(HC=AC-AH=\dfrac{36}{5}\)

b.

Hai tam giác vuông ADC và AHF có chung góc \(\widehat{HAD}\)

\(\Rightarrow\Delta_VADC\sim\Delta_VAHF\left(g.g\right)\)

\(\Rightarrow\dfrac{AD}{AH}=\dfrac{AC}{AF}\Rightarrow AD.AF=AC.AH\) (1)

Mặt khác theo hệ thức lượng tam giác vuông ABC:

\(AB^2=AH.AC\) (2)

(1);(2) \(\Rightarrow AD.AF=AB^2\)

NV
6 tháng 7 2021

undefined