Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: AD=12 nên BC=12
AC=20
\(AH=\dfrac{AB^2}{AC}=\dfrac{256}{20}=12.8\left(cm\right)\)
CH=20-12,8=7,2cm
b: Xét ΔAHF vuông tại H và ΔADC vuông tại D có
góc DAC chung
DO đó: ΔAHF đồng dạng với ΔADC
Suy ra: AH/AD=AF/AC
hay \(AD\cdot AF=AH\cdot AC=AB^2\)
a: góc NED+góc NCD=180 độ
=>NEDC nội tiếp
b: ΔAHB vuôg tại H có HM vuông góc AB
nên AM*AB=AH^2
ΔAHC vuông tại H có HN vuông góc AC
nên AN*AC=AH^2
=>AM*AB=AN*AC
Xét ΔADC vuông tại D có DE là đường cao ứng với cạnh huyền AC nên ta có:
\(\dfrac{1}{DE^2}=\dfrac{1}{AD^2}+\dfrac{1}{DC^2}\)
\(\Leftrightarrow\dfrac{1}{DE^2}=\dfrac{1}{6^2}+\dfrac{1}{8^2}=\dfrac{25}{576}\)
\(\Leftrightarrow DE^2=23.04\)
hay DE=4,8(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAFD vuông tại A có AE là đường cao ứng với cạnh huyền DF, ta được:
\(DA^2=DE\cdot DF\)
\(\Leftrightarrow DF=\dfrac{6^2}{4.8}=7,5\left(cm\right)\)
Ta có: DE+EF=DF(E nằm giữa D và F)
nên EF=DF-DE=7,5-4,8=2,7(cm)
Áp dụng định lí Pytago vào ΔADE vuông tại E, ta được:
\(AD^2=AE^2+DE^2\)
\(\Leftrightarrow AE^2=6^2-4.8^2=12.96\)
hay AE=3,6(cm)
Xét ΔAEF vuông tại E và ΔABC vuông tại B có
\(\widehat{BAC}\) chung
Do đó: ΔAEF\(\sim\)ΔABC(g-g)
Suy ra: \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AF=\dfrac{AE\cdot AC}{AB}=\dfrac{3.6\cdot8}{6}=4.8\left(cm\right)\)
Ta có: AF+FB=AB(F nằm giữa A và B)
nên BF=AB-AF=8-4,8=3,2(cm)
a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABD vuông tại A có AH là đường cao ứng với cạnh huyền BD, ta được:
\(DH\cdot DB=AD^2\left(1\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔADK vuông tại D có DH là đường cao ứng với cạnh huyền AK, ta được:
\(AH\cdot AK=AD^2\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra \(DH\cdot DB=AH\cdot AK\)
a: Xét (O) có
ΔBDC nội tiếp
BC là đường kính
Do đó: ΔBDC vuông tại D
=>CD\(\perp\)AB tại D
Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó;ΔBEC vuông tại E
=>BE\(\perp\)AC tại E
Xét ΔABC có
BE,CD là các đường cao
BE cắt CD tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC tại F
Xét tứ giác HECF có \(\widehat{HEC}+\widehat{HFC}=90^0+90^0=180^0\)
nên HECF là tứ giác nội tiếp
=>\(\widehat{HEF}=\widehat{HCF}\)
a, AC = 36:3,6=10 (cm)
AB2 = 102-62= 64 , AB = 8 (cm)
a/ dùng hệ thức lượng :
AC = 10cm
AB = 8cm
b/ AB2 - AD2 = CD2 - AD2 = DH.DF - DH.DE = DH(DF - DE) = DH.EF
Pitago tam giác vuông ACD:
\(AC=\sqrt{AD^2+CD^2}=\sqrt{AD^2+AB^2}=20\)
Hệ thức lượng tam giác vuông ABC với đường cao BH:
\(AB^2=AH.AC\Rightarrow AH=\dfrac{AB^2}{AC}=\dfrac{64}{5}\)
\(HC=AC-AH=\dfrac{36}{5}\)
b.
Hai tam giác vuông ADC và AHF có chung góc \(\widehat{HAD}\)
\(\Rightarrow\Delta_VADC\sim\Delta_VAHF\left(g.g\right)\)
\(\Rightarrow\dfrac{AD}{AH}=\dfrac{AC}{AF}\Rightarrow AD.AF=AC.AH\) (1)
Mặt khác theo hệ thức lượng tam giác vuông ABC:
\(AB^2=AH.AC\) (2)
(1);(2) \(\Rightarrow AD.AF=AB^2\)