K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 7 2021

Pitago tam giác vuông ACD:

\(AC=\sqrt{AD^2+CD^2}=\sqrt{AD^2+AB^2}=20\)

Hệ thức lượng tam giác vuông ABC với đường cao BH:

\(AB^2=AH.AC\Rightarrow AH=\dfrac{AB^2}{AC}=\dfrac{64}{5}\)

\(HC=AC-AH=\dfrac{36}{5}\)

b.

Hai tam giác vuông ADC và AHF có chung góc \(\widehat{HAD}\)

\(\Rightarrow\Delta_VADC\sim\Delta_VAHF\left(g.g\right)\)

\(\Rightarrow\dfrac{AD}{AH}=\dfrac{AC}{AF}\Rightarrow AD.AF=AC.AH\) (1)

Mặt khác theo hệ thức lượng tam giác vuông ABC:

\(AB^2=AH.AC\) (2)

(1);(2) \(\Rightarrow AD.AF=AB^2\)

NV
6 tháng 7 2021

undefined

a: AD=12 nên BC=12

AC=20

\(AH=\dfrac{AB^2}{AC}=\dfrac{256}{20}=12.8\left(cm\right)\)

CH=20-12,8=7,2cm

b: Xét ΔAHF vuông tại H và ΔADC vuông tại D có

góc DAC chung

DO đó: ΔAHF đồng dạng với ΔADC

Suy ra: AH/AD=AF/AC

hay \(AD\cdot AF=AH\cdot AC=AB^2\)

a: góc NED+góc NCD=180 độ

=>NEDC nội tiếp

b: ΔAHB vuôg tại H có HM vuông góc AB

nên AM*AB=AH^2

ΔAHC vuông tại H có HN vuông góc AC

nên AN*AC=AH^2

=>AM*AB=AN*AC

Xét ΔADC vuông tại D có DE là đường cao ứng với cạnh huyền AC nên ta có:

\(\dfrac{1}{DE^2}=\dfrac{1}{AD^2}+\dfrac{1}{DC^2}\)

\(\Leftrightarrow\dfrac{1}{DE^2}=\dfrac{1}{6^2}+\dfrac{1}{8^2}=\dfrac{25}{576}\)

\(\Leftrightarrow DE^2=23.04\)

hay DE=4,8(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAFD vuông tại A có AE là đường cao ứng với cạnh huyền DF, ta được:

\(DA^2=DE\cdot DF\)

\(\Leftrightarrow DF=\dfrac{6^2}{4.8}=7,5\left(cm\right)\)

Ta có: DE+EF=DF(E nằm giữa D và F)

nên EF=DF-DE=7,5-4,8=2,7(cm)

Áp dụng định lí Pytago vào ΔADE vuông tại E, ta được:

\(AD^2=AE^2+DE^2\)

\(\Leftrightarrow AE^2=6^2-4.8^2=12.96\)

hay AE=3,6(cm)

Xét ΔAEF vuông tại E và ΔABC vuông tại B có 

\(\widehat{BAC}\) chung

Do đó: ΔAEF\(\sim\)ΔABC(g-g)

Suy ra: \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AF=\dfrac{AE\cdot AC}{AB}=\dfrac{3.6\cdot8}{6}=4.8\left(cm\right)\)

Ta có: AF+FB=AB(F nằm giữa A và B)

nên BF=AB-AF=8-4,8=3,2(cm)

a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABD vuông tại A có AH là đường cao ứng với cạnh huyền BD, ta được:

\(DH\cdot DB=AD^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔADK vuông tại D có DH là đường cao ứng với cạnh huyền AK, ta được:

\(AH\cdot AK=AD^2\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra \(DH\cdot DB=AH\cdot AK\)

a: Xét (O) có

ΔBDC nội tiếp

BC là đường kính

Do đó: ΔBDC vuông tại D

=>CD\(\perp\)AB tại D

Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó;ΔBEC vuông tại E

=>BE\(\perp\)AC tại E

Xét ΔABC có

BE,CD là các đường cao

BE cắt CD tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC tại F

Xét tứ giác HECF có \(\widehat{HEC}+\widehat{HFC}=90^0+90^0=180^0\)

nên HECF là tứ giác nội tiếp

=>\(\widehat{HEF}=\widehat{HCF}\)

31 tháng 1

Bạn giúp mình phần vẽ hình được không ạ ?

a,  AC = 36:3,6=10 (cm)

AB2 = 102-62= 64 , AB = 8  (cm)

9 tháng 9 2021

a/ dùng hệ thức lượng :

AC = 10cm

AB = 8cm

b/ AB2 - AD2 = CD2 - AD2 = DH.DF - DH.DE = DH(DF - DE) = DH.EF