Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:AB = CD (gt) \(\Rightarrow\)\(\frac{AB}{2}=\frac{CD}{2}\)
Mà \(\frac{AB}{2}=BM\)(vì M là trung điểm của AB)
và \(\frac{CD}{2}=CP\)(vì P là trung điểm của CD)
\(\Rightarrow\)BM = CP (1)
Ta lại có: \(M\in AB\)và \(P\in CD\)
\(\Rightarrow MP=BC\)(2)
Từ (1) và (2), suy ra: MBCP là hình chữ nhật (đpcm)
b) Gọi K là trung điểm của BH \(\Rightarrow\)NK đường trung bình của \(\Delta ABH\)
Ta có NK//AB và NK = \(\frac{1}{2}AB\)
Mà CP//AB và CP =\(\frac{1}{2}CD=\frac{1}{2}AB\Rightarrow NK=CP\)
\(\Rightarrow\)NKCP là hình bình hành
\(\Rightarrow\)NK//CP (1)
Vì NK//AB , AB\(\perp\)BC nên NK\(\perp\)BC
Suy ra K là trực tâm \(\Delta BCM\); \(CK\perp BN\)(2)
Từ (1) và (2), suy ra: BN vưông góc NP (đpcm)
a) Xét tứ giác ADHE có
\(\widehat{EAD}=90^0\)(\(\widehat{BAC}=90^0\), E∈AC, D∈AB)
\(\widehat{ADH}=90^0\)(HD⊥AB)
\(\widehat{AEH}=90^0\)(HE⊥AC)
Do đó: ADHE là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
b) Xét ΔCEH vuông tại E có EM là đường trung tuyến ứng với cạnh huyền CH(M là trung điểm của CH)
nên \(EM=\dfrac{CH}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
mà \(MH=\dfrac{CH}{2}\)(M là trung điểm của CH)
nên EM=MH
Xét ΔMEH có ME=MH(cmt)
nên ΔMEH cân tại M(Định nghĩa tam giác cân)
⇒\(\widehat{MEH}=\widehat{MHE}\)(hai góc ở đáy)
a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
Do đó: ADHE là hình chữ nhật
b: Xét tứ giác ADEN có
NE//AD
NE=AD
Do đó: ADEN là hình bình hành