K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2017

Vẽ hình đi, mk làm cho

9 tháng 11 2017

A B C D H M N P K

a) Ta có:AB = CD (gt) \(\Rightarrow\)\(\frac{AB}{2}=\frac{CD}{2}\)

Mà \(\frac{AB}{2}=BM\)(vì M là trung điểm của AB)

và \(\frac{CD}{2}=CP\)(vì P là trung điểm của CD)

\(\Rightarrow\)BM = CP (1)

Ta lại có: \(M\in AB\)và \(P\in CD\)

\(\Rightarrow MP=BC\)(2)

Từ (1) và (2), suy ra: MBCP là hình chữ nhật (đpcm)

b) Gọi K là trung điểm của BH \(\Rightarrow\)NK đường trung bình của \(\Delta ABH\)

Ta có NK//AB và NK = \(\frac{1}{2}AB\)

Mà CP//AB và CP =\(\frac{1}{2}CD=\frac{1}{2}AB\Rightarrow NK=CP\)

\(\Rightarrow\)NKCP là hình bình hành

\(\Rightarrow\)NK//CP (1)

Vì NK//AB , AB\(\perp\)BC nên NK\(\perp\)BC

Suy ra K là trực tâm \(\Delta BCM\);   \(CK\perp BN\)(2)

Từ (1) và (2), suy ra: BN vưông góc NP (đpcm)

a) Xét tứ giác ADHE có 

\(\widehat{EAD}=90^0\)(\(\widehat{BAC}=90^0\), E∈AC, D∈AB)

\(\widehat{ADH}=90^0\)(HD⊥AB)

\(\widehat{AEH}=90^0\)(HE⊥AC)

Do đó: ADHE là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Xét ΔCEH vuông tại E có EM là đường trung tuyến ứng với cạnh huyền CH(M là trung điểm của CH)

nên \(EM=\dfrac{CH}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

mà \(MH=\dfrac{CH}{2}\)(M là trung điểm của CH)

nên EM=MH

Xét ΔMEH có ME=MH(cmt)

nên ΔMEH cân tại M(Định nghĩa tam giác cân)

\(\widehat{MEH}=\widehat{MHE}\)(hai góc ở đáy)

 

a: Xét tứ giác ADHE có 

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

Do đó: ADHE là hình chữ nhật

b: Xét tứ giác ADEN có 

NE//AD
NE=AD
Do đó: ADEN là hình bình hành