K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2016

Hình bạn tự vẽ nha

a) CMR Tứ giác BDCN là hình bình hành

Vì D đối xứng N qua M (gt) => M là trung điểm của DM (đn)

Xét tứ giác BDCN có

M là trung điểm BC (gt)

M là trung điểm DM (cmt)

=> Tứ giác BDCN là hbh (dhnb hbh)

b) CMR AD=BN

Vì BDCN là hbh( cmt) => BD//NC => BD//AN (1) và BD=NC

mà NC=AN (N là trung điểm AC)

=> BD=NC (bắc cầu) (2)

Mà BAC=90 (gt) (3)

Từ (1) và (2), (3)=> BDNA hcn (dhnb hcn)=> AD=BN (t/c đường chéo hcn)

c) CMR EC=2DE

Xét tam giác ACE có

N là trung điểm AC (gt)

FN//EC (BN//DC)

=> F là trung điểm của AE ( định lý đường trung bình)

mà N là trung điểm của AC (gt)

=> FN là đường TB của tam giác AEC ( đn)

=> FN= 1/2 EC (1)

Xét tam giác FNM=tam giác EMD (cgc)

=> DE=FN ( 2 góc t/ư)(2)

Từ (1) và (2) => DE=1/2 EC ( bắc cầu)

 

8 tháng 12 2020

Đề bài sai thì làm thế nào?

Tại sao tam giác ABC vuông tại H?Vuông tại A đúng ko?

14 tháng 5 2022

tham khảo

a/ xét tứ giác AMCH , ta có 
N là trung điểm AC [ gt] 
N là trung điểm HM [ vì H đối xứng N qua M] 
mà AC thuộc HM tại N 
suy ra ; AMCH là hình bình hành [ dấu hiệu nhận biết ]
có AMCH là hình bình hành [ cma] 
suy ra MC//AH [t/chat hình bình hành] M thuộc BC 
suy ra AH//BM [1]
lại có M là trung điểm của BC [ gt ]
suy ra BM=MC
mà AH=BM [ tứ giác AMCH là hình bình hành] [2] 
xét tứ giác ABMN , có ; 
AH //BM [cmt]
AH= BM [cmt]
suy ra ABMH là hình bình hành [ dấu hiệu nhận biết ]

19 tháng 12 2021

Xét tứ giác BDCN có 

M là trung điểm của BC

M là trung điểm của DN

Do đó: BDCN là hình bình hành

12 tháng 12 2021

\(a,\) Vì M là trung điểm ND và BC nên BDCN là hình bình hành

\(b,\) Vì BDCN là hình bình hành nên \(BD\text{//}NC\) hay \(BD\text{//}NA\) và \(BD=NC=NA\) (N là trung điểm AC)

Do đó ABDN là hình bình hành

Mà \(\widehat{BAC}\equiv\widehat{NAB}=90^0\) nên ABDN là hình chữ nhật

\(c,\) Kẻ đường cao AH

\(\Rightarrow\left\{{}\begin{matrix}S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}AH.2BM=AH.BM\\S_{ABM}=\dfrac{1}{2}AH.BM\end{matrix}\right.\\ \Rightarrow\dfrac{S_{ABM}}{S_{ABC}}=\dfrac{AH.BM}{2AH.BM}=\dfrac{1}{2}\\ \Rightarrow S_{ABC}=2S_{ABM}\)

12 tháng 12 2021

Em cảm ơn ạ 

30 tháng 12 2020

Bn tự vẽ hình nha

a, Xét tứ giác ABCD có

MA=MC=1/2AC( m là trung điểm AC-gt)

MB=MD=1/2BD(B đối D qua M-gt)

Mà BD cắt AC tại M

-> ABCD là hình bình hành

31 tháng 12 2020

undefined 

a) Do B và D đối xứng qua M

\(\Rightarrow\) M là trung điểm BD

Tứ giác ABCD có:

M là trung điểm AC (gt)

M là trung điểm BD (cmt)

\(\Rightarrow\) ABCD là hình bình hành (tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường)

b) Do ABCD là hình bình hành

\(\Rightarrow\) AB // CD và AB = CD

\(\Rightarrow\) AN // CD

Do B và N đối xứng nhau qua A

\(\Rightarrow AN=AB\)

Mà AB = CD (cmt)

\(\Rightarrow\) AN = CD

Do AB \(\perp\) AC (\(\Delta ABC\) vuông tại A)

\(\Rightarrow AN\perp AC\)

\(\Rightarrow\widehat{CAN}=90^0\)

Tứ giác ACDN có:

AN // CD (cmt)

AN = CD (cmt)

\(\Rightarrow ACDN\) là hình bình hành

\(\widehat{CAN}=90^0\)

\(\Rightarrow ACDN\) là hình chữ nhật (hình bình hành có một góc vuông)

c) Gọi E là giao điểm của MN và BC

Do AK // MN (gt)

\(\Rightarrow AK\) // ME và AK // NE

\(\Delta BNE\)

AK // NE

A là trung điểm BN

\(\Rightarrow\) K là trung điểm BE

\(\Rightarrow KB=KE\)

\(\Delta AKC\) có:

AK // ME (cmt)

M là trung điểm AC

\(\Rightarrow\) E là trung điểm CK

\(\Rightarrow\) KC = 2 KE

Mà KB = KE (cmt)

\(\Rightarrow\) KC = 2 KB

a: Xét ΔABC có 

M là trung điểm của BC

E là trung điểm của AB

Do đó: ME là đường trung bình

Xét tứ giác BECI có

M là trung điểm của BC

M là trung điểm của EI

Do đó: BECI là hình bình hành

2 tháng 1 2022

giúp mình câu c vs ạ