K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017

a) y= -x4 + 2mx2 – 2m + 1(Cm). Tập xác định: D = R

y ‘ = -4x3 + 4mx = -4x (x2 – m)

- Với m ≤ 0 thì y’ có một nghiệm x = 0 và đổi dấu + sang – khi qua nghiệm này. Do đó hàm số có một cực đại là x = 0

Do đó, hàm số có 2 cực trị tại x = ± √m và có một cực tiểu tại x = 0

b) Phương trình -x4 + 2mx2 – 2m + 1 = 0 luôn có nghiệm x = ± 1 với mọi m nên (Cm) luôn cắt trục hoành.

c) Theo lời giải câu a, ta thấy ngay:

với m > 0 thì đồ thị (Cm) có cực đại và cực tiểu.


31 tháng 3 2017

a) . = = = = 3^{2} = 9.

b) : = = = = = 2^{3} = 8.

c) + = 16^{0,75} + = + 4^{2,5} = 2^{4.0,75} + 2^{2.2,5} = 2^{3} + 2^{5} = 40.

d) - = - = - = 5^{2. 1,5} - = 121.



GV
26 tháng 4 2017

a) \(9^{\dfrac{2}{5}}.27^{\dfrac{2}{5}}=\left(9.27\right)^{\dfrac{2}{5}}=\left(3^2.3^3\right)^{\dfrac{2}{5}}=3^{5.\dfrac{2}{5}}=3^2=9\)

b) \(=\left(\dfrac{144}{9}\right)^{\dfrac{3}{4}}=\left(\dfrac{12}{3}\right)^{2.\dfrac{3}{4}}=4^{\dfrac{3}{2}}=2^{2.\dfrac{3}{2}}=2^3=8\)

c) \(=\left(\dfrac{1}{2}\right)^{4.\left(-0,75\right)}+\left(\dfrac{1}{4}\right)^{-\dfrac{5}{2}}\)

\(=\left(\dfrac{1}{2}\right)^{-3}+\left(\dfrac{1}{2}\right)^{-5}\)

\(=2^3+2^5=40\)

d) \(=\left(0,2\right)^{2.\left(-1.5\right)}-\left(0,5\right)^{3.\dfrac{-2}{3}}\)

\(=\left(\dfrac{1}{5}\right)^{-3}-\left(\dfrac{1}{2}\right)^{-2}\)

\(=5^3-2^2=121\)

31 tháng 3 2017

- Xét a = 0 hàm số trở thành y = -9x + b. Trường hợp này hàm số không có cực trị.

- Xét a # 0. Ta có : y’ = 5a2x2 + 4ax – 9 ; y’= 0 ⇔ hoặc

- Với a < 0 ta có bảng biến thiên :

Theo giả thiết điểm cực đại nên . Theo yêu cầu bài toán thì

- Với a > 0 ta có bảng biến thiên :

là điểm cực đại nên . Theo yêu cầu bài toán thì:

Vậy các giá trị a, b cần tìm là: hoặc .

7 tháng 6 2017

a) \(2^{x+4}+2^{x+2}=5^{x+1}+3\cdot5^x\)

\(\Rightarrow2^x+2^4+2x^x+2^2=5^x\cdot x+3\cdot5^x\)

\(\Leftrightarrow2^x+16+2^x\cdot4=5\cdot5^x+3\cdot5^x\)

\(\Leftrightarrow16\cdot2^x+4\cdot2^x=8\cdot5^x\)

\(\Leftrightarrow20\cdot2^x=8\cdot5^x\)

\(\Leftrightarrow20\cdot\left(\dfrac{2}{5}\right)^x=8\)

\(\Leftrightarrow\left(\dfrac{2}{5}\right)^x=\dfrac{2}{5}\)

\(\Leftrightarrow\left(\dfrac{2}{5}\right)^x=\left(\dfrac{2}{5}\right)^1\)

\(\Rightarrow x=1\)

31 tháng 3 2017

a) ta có 2√5= = √20 ; 3√2 = = √ 18 => 2√5 > 3√2

=> <

b) 6√3 = = √108 ; 3√6 = = √54 => 6√3 > 3√6 => >



GV
26 tháng 4 2017

a) \(2\sqrt{5}=\sqrt{2^2.5}=\sqrt{20}\)

\(3\sqrt{2}=\sqrt{3^2.2}=\sqrt{18}\)

=> \(2\sqrt{5}>3\sqrt{2}\)

=> \(\left(\dfrac{1}{3}\right)^{2\sqrt{5}}< \left(\dfrac{1}{3}\right)^{3\sqrt{2}}\)

(vì cơ số \(\dfrac{1}{3}< 1\))

b) Vì \(3< 6^2\)

=> \(3^{\dfrac{1}{6}}< \left(6^2\right)^{\dfrac{1}{6}}\)

=> \(\sqrt[6]{3}< 6^{\dfrac{1}{3}}\)

=> \(\sqrt[6]{3}< \sqrt[3]{6}\)

=> \(7^{\sqrt[6]{3}}< 7^{\sqrt[3]{6}}\)

NV
12 tháng 12 2018

\(\left(xy-1\right)2^{2xy-1}=\left(x^2+y\right)2^{x^2+y}\)

\(\Leftrightarrow\left(xy-1\right)2^{2\left(xy-1\right)+1}=\left(x^2+y\right)2^{x^2+y}\)

\(\Leftrightarrow2\left(xy-1\right)2^{2\left(xy-1\right)}=\left(x^2+y\right)2^{x^2+y}\)

Do vế phải luôn dương \(\Rightarrow VT>0\Rightarrow xy-1>0\) (1)

Xét hàm \(f\left(t\right)=t.2^t\) với \(t>0\Rightarrow f'\left(t\right)=2^t+t.2^t.ln2>0\)

\(\Rightarrow f\left(t\right)\) đồng biến \(\Rightarrow f\left(t_1\right)=f\left(t_2\right)\Leftrightarrow t_1=t_2\)

\(\Rightarrow2\left(xy-1\right)=x^2+y\Rightarrow2xy-y=x^2+2\) (thay \(x=\dfrac{1}{2}\) thấy ko phải nghiệm)

\(\Rightarrow y=\dfrac{x^2+2}{2x-1}\) (2)

Thay (2) vào (1): \(xy-1>0\Rightarrow x.\left(\dfrac{x^2+2}{2x-1}\right)-1>0\Rightarrow\dfrac{x^3+2x}{2x-1}-1>0\)

\(\Rightarrow\dfrac{x^3+1}{2x-1}>0\Rightarrow2x-1>0\) (do \(x>0\Rightarrow x^3+1>0\))

Vậy \(y=\dfrac{x^2+2}{2x-1}=\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{9}{4\left(2x-1\right)}=\dfrac{2x-1}{4}+\dfrac{9}{4\left(2x-1\right)}+\dfrac{1}{2}\)

\(\Rightarrow y\ge2\sqrt{\dfrac{\left(2x-1\right)}{4}.\dfrac{9}{4\left(2x-1\right)}}+\dfrac{1}{2}=2\)

\(\Rightarrow y_{min}=2\) khi \(\dfrac{2x-1}{4}=\dfrac{9}{4\left(2x-1\right)}\Rightarrow x=2\)

Đáp án B

31 tháng 3 2017

a) 1^{3,75} = 1 = 2^{0} ; = 2^{3}.

Mặt khác trong hai lũy thừa cungc cơ số lớn hơn 1, lũy thừa nào có số mũ lớn hơn là lũy thừa lớn hơn. Do đó theo thứ tự tăng dần ta được:

2^{-1} < 1^{3,75} <

b) 98^{0} = 1 = ; = ; = = 2 = .

Do đó 98^{0} < < .