\(\int_0^{ln2}\frac{e^{2x}+3e^x}{e^{2x}+3e^x+2}dx\)
 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2016

Tách ra rồi tính tích phân từng phần thôi bạn.

9 tháng 6 2016

Itính từng phần

I2 đặt ẩn phụ là dkkkkk

AH
Akai Haruma
Giáo viên
8 tháng 2 2017

Câu 1)

Đặt \(\left\{\begin{matrix} u=\ln ^2x\\ dv=\frac{1}{x^2}dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{2\ln x}{x}\\ v=\frac{-1}{x}\end{matrix}\right.\)

\(\int \left ( \frac{\ln}{x} \right )^2dx=\frac{-\ln^2x}{x}+2\int \frac{\ln x}{x^2}dx\)

Đặt \(\left\{\begin{matrix} t=\ln x\\ dk=\frac{1}{x^2}dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} dt=\frac{1}{x}dx\\ k=-\frac{1}{x}\end{matrix}\right.\Rightarrow \int \frac{\ln x}{x^2}dx=-\frac{\ln x}{x}+\int \frac{1}{x^2}dx=\frac{-\ln x}{x}-\frac{1}{x}\)

\(\Rightarrow I=\left.\begin{matrix} e\\ 1\end{matrix}\right|\left(\frac{-\ln^2 x}{x}-\frac{2\ln x}{x}-\frac{2}{x}\right)=2-\frac{5}{e}\)

AH
Akai Haruma
Giáo viên
8 tháng 2 2017

Câu 2)

\(I=\int ^{\frac{\pi}{4}}_{0}\frac{x}{1+\cos 2x}dx=\frac{1}{2}\int ^{\frac{\pi}{4}}_{0}\frac{x}{\cos^2x}dx\)

Đặt \(\left\{\begin{matrix} u=x\\ dv=\frac{dx}{\cos^2x}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=dx\\ v=\tan x\end{matrix}\right.\Rightarrow I=\left.\begin{matrix} \frac{\pi}{4}\\ 0\end{matrix}\right|\frac{x\tan x}{2}-\frac{1}{2}\int^{\frac{\pi}{4}}_{0} \tan xdx\)

\(=\frac{\pi}{8}+\frac{1}{2}\int ^{\frac{\pi}{4}}_{0}\frac{d(\cos x)}{\cos x}=\frac{\pi}{8}+\left.\begin{matrix} \frac{\pi}{4}\\ 0\end{matrix}\right|\frac{\ln |\cos x|}{2}=\frac{\pi}{8}+\frac{\ln\frac{\sqrt{2}}{2}}{2}\)

19 tháng 3 2016

Để tìm một số nguyên hàm ta có thể lưu ý và áp dụng nhận xetsau : nguyên hàm của một phân thức mà tử số của nó là vi phân của mẫu số là bằng logarit của đại lượng tuyệt đối của mẫu số :

\(\int\frac{u'dx}{u}=\int\frac{du}{u}=\ln\left|u\right|+C\)

a) \(\int\frac{\cos2x}{\sin x\cos x}dx=2\int\frac{\cos2x}{\sin2x}dx=\int\frac{d\left(\sin2x\right)}{\sin2x}=\ln\left|\sin2x\right|+C\)

b)\(\int\frac{e^{2x}}{1-3e^{2x}}dx=-\frac{1}{6}\int\frac{-6e^{2x}}{1-3e^{2x}}dx=-\frac{1}{6}\int\frac{d\left(1-3e^{2x}\right)}{1-3e^{2x}}=-\frac{1}{6}\ln\left|1-3e^{2x}\right|+C\)

c)\(\int\frac{2x-5}{x^2-5x+7}dx=\int\frac{d\left(x^2-5x+7\right)}{x^2-5x+7}=\ln\left|x^2-5x+7\right|+C\)

                                                \(=\ln\left(x^2-5x+7\right)+C\)

d)\(\int\frac{xdx}{x^2+1}=\frac{1}{2}\int\frac{2xdx}{x^2+1}=\frac{1}{2}\int\frac{d\left(x^2+1\right)}{x^2+1}=\frac{1}{2}\ln\left(x^2+1\right)+C\)

e) \(\int\frac{dx}{\sin x}=\int\frac{\sin xdx}{\sin^2x}=\int\frac{d\left(\cos x\right)}{\cos^2x-1}=\frac{1}{2}\ln\frac{1-\cos x}{1+\cos x}+C\)

20 tháng 1 2017

lm jup mk di m.n

NV
24 tháng 11 2019

Không phải tất cả các câu đều dùng nguyên hàm từng phần được đâu nhé, 1 số câu phải dùng đổi biến, đặc biệt những câu liên quan đến căn thức thì đừng dại mà nguyên hàm từng phần (vì càng nguyên hàm từng phần biểu thức nó càng phình to ra chứ không thu gọn lại, vĩnh viễn không ra kết quả đâu)

a/ \(I=\int\frac{9x^2}{\sqrt{1-x^3}}dx\)

Đặt \(u=\sqrt{1-x^3}\Rightarrow u^2=1-x^3\Rightarrow2u.du=-3x^2dx\)

\(\Rightarrow9x^2dx=-6udu\)

\(\Rightarrow I=\int\frac{-6u.du}{u}=-6\int du=-6u+C=-6\sqrt{1-x^3}+C\)

b/ Đặt \(u=1+\sqrt{x}\Rightarrow du=\frac{dx}{2\sqrt{x}}\Rightarrow2du=\frac{dx}{\sqrt{x}}\)

\(\Rightarrow I=\int\frac{2du}{u^3}=2\int u^{-3}du=-u^{-2}+C=-\frac{1}{u^2}+C=-\frac{1}{\left(1+\sqrt{x}\right)^2}+C\)

c/ Đặt \(u=\sqrt{2x+3}\Rightarrow u^2=2x\Rightarrow\left\{{}\begin{matrix}x=\frac{u^2}{2}\\dx=u.du\end{matrix}\right.\)

\(\Rightarrow I=\int\frac{u^2.u.du}{2u}=\frac{1}{2}\int u^2du=\frac{1}{6}u^3+C=\frac{1}{6}\sqrt{\left(2x+3\right)^3}+C\)

NV
24 tháng 11 2019

d/ Đặt \(u=\sqrt{1+e^x}\Rightarrow u^2-1=e^x\Rightarrow2u.du=e^xdx\)

\(\Rightarrow I=\int\frac{\left(u^2-1\right).2u.du}{u}=2\int\left(u^2-1\right)du=\frac{2}{3}u^3-2u+C\)

\(=\frac{2}{3}\sqrt{\left(1+e^x\right)^2}-2\sqrt{1+e^x}+C\)

e/ Đặt \(u=\sqrt[3]{1+lnx}\Rightarrow u^3=1+lnx\Rightarrow3u^2du=\frac{dx}{x}\)

\(\Rightarrow I=\int u.3u^2du=3\int u^3du=\frac{3}{4}u^4+C=\frac{3}{4}\sqrt[3]{\left(1+lnx\right)^4}+C\)

f/ \(I=\int cosx.sin^3xdx\)

Đặt \(u=sinx\Rightarrow du=cosxdx\)

\(\Rightarrow I=\int u^3du=\frac{1}{4}u^4+C=\frac{1}{4}sin^4x+C\)