K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2019

\(y^2+4^x+2y-2^{x+1}+2=0\Rightarrow\left(4^x-2^{x+1}+1\right)+\left(y^2-2y+1\right)=0\)

\(\Rightarrow\left(2^x-1\right)^2+\left(y+1\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}2^x-1=0\\y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}\)

5 tháng 1 2018

Violympic toán 8

27 tháng 6 2016

a )x2+2y2-2xy+2x-4y+2=0 
<=>x2-2x(y-1)+y2-2y+1+y2-2y+1=0 
<=>x2-2x(y-1)+(y-1)2+(y-1)2=0 
<=>(x-y+1)2+(y-1)2=0 
<=>x-y+1=0 va y-1=0 
<=>x=y-1 y=1 
<=>x=1-1=0 y=1

29 tháng 6 2015

=> (y2 + 2y + 1) + (22x -  2.2x + 1) = 0 

=> (y+1)+ (2x - 1)2 = 0 

=> y + 1 = 0 và 2x -  1 = 0

=> y = -1 và x = 0

b) Với mỗi x bất kì cho 1 giá trị y = x3 - 2x2 + x

=> có vô số x; y

29 tháng 6 2015

\(y^2+2y+4^x-2^{x+1}+2=0\)

\(y=x^3-2x^2+x\)

  Đúng không?

 

8 tháng 10 2019

Ta có: \(y^2+2y+4^x-2^{x+1}+2=0\)

\(\Leftrightarrow y^2+2y+1+2^{2x}-2^x.2^1+1=0\)

\(\Leftrightarrow\left(y+1\right)^2+\left(2^x\right)^2-2.2^x+1=0\)

\(\Leftrightarrow\left(y+1\right)^2+\left(2^x-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}y+1=0\\2^x-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=-1\\2^x=1\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}y=-1\\2^x=2^0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-1\\x=0\end{cases}}\)

Vậy x = 0 và y = -1

Lưu ý: \(\hept{\begin{cases}\\\end{cases}}\)là kí hiệu biểu hiện từ "và" nha bạn

21 tháng 10 2017

a, \(5x^2+5y^2+8xy-2x+2y+2=0\)

\(\Leftrightarrow\left(4x^2+4y^2+8xy\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)

\(\Leftrightarrow\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x+2y\right)^2=0\\\left(x-1\right)^2=0\\\left(y+1\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x+2y=0\\x-1=0\\y+1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2.1-2.1=0\\x=1\\y=-1\end{matrix}\right.\)

Vậy ...

b, \(y^2+2y+4^x-2^{x+1}+2=0\)

\(\Leftrightarrow\left(y^2+2y+1\right)+\left(4^x-2^{x+1}+1\right)=0\)

\(\Leftrightarrow\left(y+1\right)^2+\left(2^x-1\right)^2=0\Leftrightarrow\left\{{}\begin{matrix}\left(y+1\right)^2=0\\\left(2^x-1\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y+1=0\\2^x-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=-1\\2^x=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=-1\\x=0\end{matrix}\right.\)

Vậy ...