Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
I 2x-3 I = I x+1 I
2x-3 = x+1
x+1 - 2x+3=0
x (1-2) +1+3=0
-1x +4 =0
-1x = 0-4
-1x =-4
x = -4 : -1
x =4
Trả lời:
\(\left|2x-3\right|=\left|x+1\right|\)
\(\Rightarrow2x-3=x+1\) hoặc \(2x-3=-\left(x+1\right)\)
TH1: \(2x-3=x+1\)
\(2x-x=1+3\)
\(x=4\)
TH2: \(2x-3=-\left(x+1\right)\)
\(2x-3=-x-1\)
\(2x+x=-1+3\)
\(3x=2\)
\(x=\frac{2}{3}\)
Vậy \(x=4;x=\frac{2}{3}\)
Từ \(5x=2y\)\(\Rightarrow\frac{x}{y}=\frac{2}{5}\)
Từ \(2x=3z\)\(\Rightarrow\frac{x}{z}=\frac{3}{2}\)
Từ \(xy=90\)\(\Rightarrow x=\frac{90}{y};y=\frac{90}{x}\)
Ta có: \(\frac{x}{y}=\frac{2}{5}\)
Mà \(x=\frac{90}{y}\)
Nên \(\frac{\frac{90}{y}}{y}=\frac{2}{5}\)\(\Leftrightarrow\frac{90}{y^2}=\frac{2}{5}\)\(\Leftrightarrow y=\pm15\)
*Khi \(y=15\) thì \(x=\frac{90}{15}=6\) và \(z=\frac{6.2}{3}=4\)
*Khi \(y=-15\) thì \(x=\frac{90}{-15}=-6\) và \(z=\frac{-6.2}{3}=-4\)
Vậy \(\left\{x;y;z\right\}\in\left\{\left(6;15;4\right),\left(-6;-15;-4\right)\right\}\)
- Đặt x/2 = y/5 = k ( k khác 0 )
- => x=2k; y=5k (1)
- Thay (1) vào x.y=40, có :
- 2.k.5.k = 40
- 10.k mũ 2 = 40
- k mũ 2 = 40 : 10 = 4
- k = 2 hoặc k= -2
- Nếu k = 2 thì x= 2.2 = 4 ; y = 2.5 = 10
- Nếu k = -2 thì x= -2.2 = -4 ; y= -2.5= -10
- Kết luận ....
+0 ở cuối thì cộng làm gì ....
\(xy+x+y=12\)
\(\Leftrightarrow x\left(y+1\right)+\left(y+1\right)=13\)
\(\Leftrightarrow\left(x+1\right)\left(y+1\right)=13\)
Vì x , y nguyên nên x + 1 và y + 1 nguyên
=> x + 1 và y + 1 là ước của 13
Ta có bảng
x + 1 | -13 | -1 | 1 | 13 |
y + 1 | -1 | -13 | 13 | 1 |
x | -14 | -2 | 0 | 12 |
y | -2 | -14 | 12 | 0 |
Vậy \(\left(x;y\right)\in\left\{\left(-14;-2\right);\left(-2;-14\right);\left(0;12\right);\left(12;0\right)\right\}\)
\(xy+x+y=12\)
\(x\left(y+1\right)+\left(y+1\right)=13\)
\(\left(y+1\right)\left(x+1\right)=13\)
Ta có: \(x,y\inℤ\Rightarrow\hept{\begin{cases}y+1\in Z\\x+1\in Z\end{cases}}\)
Mà \(\left(y+1\right)\left(x+1\right)=13\)
\(\Rightarrow\left(y+1\right);\left(x+1\right)\in\text{Ư}\left(13\right)=\left\{\pm1;\pm13\right\}\)
Lập bảng giá trị
y+1 | 1 | -1 | 13 | -13 |
x+1 | 13 | -13 | 1 | -1 |
x | 12 | -14 | 0 | -2 |
y | 0 | -2 | 12 | -14 |
KL | Thỏa mãn | Thỏa mãn | Thỏa mãn | Thỏa mãn |
Vậy có các cặp x;y là: \(\left\{12;0\right\};\left\{-14;-2\right\};\left\{0,12\right\};\left\{-2;-14\right\}\)
Tham khảo nhé~
a)đề hình như thiếu
b)\(\left|x-3y\right|^{2017}+\left|y+4\right|^{2008}=0\)
Vì \(\left|x-3y\right|\ge0\Rightarrow\left|x-3y\right|^{2017}\ge0\)(1)
\(\left|y+4\right|\ge0\Rightarrow\left|y+4\right|^{2008}\ge0\left(2\right)\)
Từ (1) và (2)\(\Rightarrow\)\(\left|x-3y\right|^{2017}+\left|y+4\right|^{2008}\ge0\)
Mà VP=0\(\Rightarrow\left|x-3y\right|^{2017}+\left|y+4\right|^{2008}=0\Leftrightarrow\left|x-3y\right|^{2017}=0,\left|y+4\right|^{2008}=0\)
\(\Leftrightarrow x-3y=0,y+4=0\)
\(\Leftrightarrow x-3y=0,y=-4\)
\(\Leftrightarrow x-\left[3\cdot\left(-4\right)\right]=0,y=-4\)
\(\Leftrightarrow x-\left(-12\right)=0,y=-4\)
\(\Leftrightarrow x+12=0,y=-4\)
\(\Leftrightarrow x=-12,y=-4\)
x/2=4/5=k{x=2k,y=5
Thế vào x.y=40
2k.5k=40
10k=40
40:10=2
=>k=2,k= -2
với k=2=>{x=4,x=10
k= -2=>{x= -4,y= -10
Ta có:
\(\frac{x}{2}=\frac{4}{5}\)
=>\(x=\frac{4.2}{5}=\frac{8}{5}\)
=> y = 40:\(\frac{8}{5}=\frac{40.5}{8}=25\)
Vậy x = \(\frac{8}{5}\) và y=25
\(\frac{x}{y}=\frac{2}{5}\Leftrightarrow x=\frac{2}{5}y\)
Thay vào x.y=40
=> \(\frac{2}{5}y.y=40\Leftrightarrow y^2.\frac{2}{5}=40\Leftrightarrow y^2=100\Leftrightarrow\orbr{\begin{cases}y=10\Leftrightarrow x=4\\y=-10\Leftrightarrow x=-4\end{cases}}\)