Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình làm một câu để bạn tham khảo, sau đó bạn áp dụng làm các bài còn lại nha ^^
Có gì không hiểu bạn ib nha ^^
1. \(2x=3y-2x\left(1\right)\) và \(x+y=14\)
\(\left(1\right)\Leftrightarrow4x=3y\)
\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4}\)
Theo tính chất dãy tỉ số bằng nhau, có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{14}{7}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.4=8\end{matrix}\right.\)
Bạn tự kết luận ^^
Áp dụng t/c dãy tỉ số bằng nhau:
a.
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{2x}{6}=\dfrac{4y}{20}=\dfrac{2x+4y}{6+20}=\dfrac{28}{26}=\dfrac{14}{13}\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.\dfrac{14}{13}=\dfrac{52}{13}\\y=5.\dfrac{14}{13}=\dfrac{70}{13}\end{matrix}\right.\)
(Em có nhầm đề 26 thành 28 ko nhỉ, số xấu quá)
b.
\(4x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{3x}{15}=\dfrac{-2y}{-8}=\dfrac{3x-2y}{15-8}=\dfrac{35}{7}=5\)
\(\Rightarrow\left\{{}\begin{matrix}x=5.5=25\\y=4.2=20\end{matrix}\right.\)
c.
\(\dfrac{x}{-3}=\dfrac{y}{-7}=\dfrac{2x}{-6}=\dfrac{4y}{-28}=\dfrac{2x+4y}{-6-28}=\dfrac{68}{-34}=-2\)
\(\Rightarrow\left\{{}\begin{matrix}x=-3.\left(-2\right)=6\\y=-7.\left(-2\right)=14\end{matrix}\right.\)
d.
\(\dfrac{x}{2}=\dfrac{y}{-3}=\dfrac{z}{4}=\dfrac{4x}{8}=\dfrac{-3y}{9}=\dfrac{-2z}{-8}=\dfrac{4x-3y-2z}{8+9-8}=\dfrac{16}{9}\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.\dfrac{16}{9}=\dfrac{32}{9}\\y=-3.\dfrac{16}{9}=-\dfrac{48}{9}\\z=4.\dfrac{16}{9}=\dfrac{64}{9}\end{matrix}\right.\)
\(a,4x=5y\:\Rightarrow\frac{x}{5}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{12}\)
\(4y=6z\Rightarrow\frac{y}{6}=\frac{z}{4}\Rightarrow\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{x}{15}=\frac{2y}{24}=\frac{3z}{24}\)
\(\Rightarrow\frac{x-2y+3z}{15-24+24}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{5}{15}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{1}{3}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1}{3}\cdot15=5\\y=\frac{1}{3}\cdot12=4\\z=\frac{1}{3}\cdot8=\frac{8}{3}\end{cases}}\)
\(\text{Từ }\frac{3x-2y}{5}=\frac{5y-3z}{2}=\frac{2z-5x}{3}\)
\(\Rightarrow\frac{15x-10y}{25}=\frac{10y-6z}{4}=\frac{6z-15x}{9}\left(\text{nhân cả tử và mẫu của mỗi phân số với chính mẫu số của phân số đó}\right)\)
\(\text{Áp dụng tính chất dãy tỉ số bằng nhau: }\)
\(\frac{15x-10y}{25}=\frac{10y-6z}{4}=\frac{6z-15x}{9}=\frac{\left(15x-10y\right)+\left(10y-6z\right)+\left(6z-15x\right)}{25+4+9}=\frac{15x-10y+10y-6z+6z-15x}{38}=\frac{\left(15x-15x\right)-\left(10y-10y\right)-\left(6z-6z\right)}{38}=\frac{0}{38}=0\)
\(\left\{{}\begin{matrix}\frac{15x-10y}{25}=0\\\frac{10y-6z}{4}=0\\\frac{6z-15x}{9}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}15x-10y=0\\10y-6z=0\\6z-15x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}15x=10y\\10y=6z\\6z=15x\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\frac{x}{10}=\frac{y}{15}\\\frac{y}{6}=\frac{z}{10}\\\frac{z}{15}=\frac{x}{6}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\frac{x}{20}=\frac{y}{30}\left(1\right)\\\frac{y}{30}=\frac{z}{50}\left(2\right)\\\frac{z}{15}=\frac{x}{6}\end{matrix}\right.\)
\(\text{Từ (1) và (2)}\Rightarrow\frac{x}{20}=\frac{y}{30}=\frac{z}{50}\)
\(\Rightarrow\frac{10x}{200}=\frac{3y}{90}=\frac{2z}{100}\)
\(\text{Áp dụng tính chất dãy tỉ số bằng nhau:}\)
\(\frac{10x}{200}=\frac{3y}{90}=\frac{2z}{100}=\frac{10x-3y-2z}{200-90-100}=\frac{-4}{10}=\frac{-2}{5}\)
\(\left\{{}\begin{matrix}\frac{x}{20}=\frac{-2}{5}\\\frac{y}{30}=\frac{-2}{5}\\\frac{z}{50}=\frac{-2}{5}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-8\\y=-12\\z=-20\end{matrix}\right.\)
\(\text{Vậy }x=-8,y=-12,z=-20\)
Giải:
Ta có: \(\dfrac{3x-2y}{5}=\dfrac{5y-3z}{2}=\dfrac{2z-5x}{2}\)
\(\Rightarrow\dfrac{15x-10y}{25}=\dfrac{10y-6z}{4}=\dfrac{6z-15x}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau có:
\(\Rightarrow\dfrac{15x-10y}{25}=\dfrac{10y-6z}{4}=\dfrac{6z-15x}{6}=\dfrac{15x-10y+10y-6z+6z-15x}{25+4+6}=0\)
\(\Rightarrow\left\{{}\begin{matrix}15x-10y=0\\10y-6z=0\\6z-15x=0\end{matrix}\right.\Rightarrow15x=10y=6z\)
\(\Rightarrow\dfrac{15x}{30}=\dfrac{10y}{30}=\dfrac{6z}{30}\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{10x}{20}=\dfrac{3y}{9}=\dfrac{2z}{10}=\dfrac{10x-3y-2z}{20-9-10}=\dfrac{5}{1}=5\)
\(\Rightarrow\left\{{}\begin{matrix}x=10\\y=15\\z=25\end{matrix}\right.\)
Vậy...
\(\dfrac{3x-2y}{5}=\dfrac{5y-3z}{2}=\dfrac{2z-5x}{2}\)
\(\Rightarrow\dfrac{5\left(3x-2y\right)}{25}=\dfrac{2\left(5y-3z\right)}{4}=\dfrac{3\left(2z-5x\right)}{6}\)
\(\Rightarrow\dfrac{15x-10y}{25}=\dfrac{10y-6z}{4}=\dfrac{6z-15x}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{15x-10y}{25}=\dfrac{10y-6z}{4}=\dfrac{6z-15x}{6}\)
\(=\dfrac{15x-10y+10y-6z+6z-15x}{25+4+6}\)
\(=0\)
\(\Rightarrow\left\{{}\begin{matrix}3x=2y\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}\\5y=3z\Rightarrow\dfrac{y}{3}=\dfrac{z}{5}\\2z=5x\Rightarrow\dfrac{z}{5}=\dfrac{x}{2}\end{matrix}\right.\)
\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)
\(\Rightarrow\dfrac{10x}{20}=\dfrac{3y}{9}=\dfrac{2z}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{10x}{20}=\dfrac{3y}{9}=\dfrac{2z}{10}=\dfrac{10x-3y-2z}{20-9-10}=\dfrac{5}{1}=5\)
\(\Rightarrow\left\{{}\begin{matrix}x=5.2=10\\y=5.3=15\\z=5.5=25\end{matrix}\right.\)