Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lý Bê-du, tìm được số dư phép chia f(x) cho x+1 chính là f(-1)
Số dư là :
\(f\left(-1\right)=1-\left(-1\right)+\left(-1\right)^2-\left(-1\right)^3+...-\left(-1\right)^{99}+\left(-1\right)^{100}\)
\(=1+1+1+...+1\)
( 101 số )
\(=1.101=101\)
Vậy ...
\(\frac{x+3}{x-3}-\frac{x+5}{x+6}=\frac{47}{x^2+3x-18}\) (ĐK: \(x\ne3,x\ne-6\))
\(\Leftrightarrow\frac{\left(x+3\right)\left(x+6\right)-\left(x+5\right)\left(x-3\right)}{\left(x-3\right)\left(x+6\right)}=\frac{47}{\left(x-3\right)\left(x+6\right)}\)
\(\Rightarrow7x+33=47\)
\(\Leftrightarrow x=2\)(tm).
Trả lời:
\(\frac{x+3}{x-3}-\frac{x+5}{x+6}=\frac{47}{x^2+3x-18}\left(đkxđ:x\ne3;x\ne-6\right)\)
\(\Leftrightarrow\frac{x+3}{x-3}-\frac{x+5}{x+6}=\frac{47}{x^2-3x+6x-18}\)
\(\Leftrightarrow\frac{x+3}{x-3}-\frac{x+5}{x+6}=\frac{47}{x\left(x-3\right)+6\left(x-3\right)}\)
\(\Leftrightarrow\frac{x+3}{x-3}-\frac{x+5}{x+6}=\frac{47}{\left(x-3\right)\left(x+6\right)}\)
\(\Leftrightarrow\frac{\left(x+3\right)\left(x+6\right)-\left(x+5\right)\left(x-3\right)}{\left(x-3\right)\left(x+6\right)}=\frac{47}{\left(x-3\right)\left(x+6\right)}\)
\(\Rightarrow x^2+9x+18-\left(x^2+2x-15\right)=47\)
\(\Leftrightarrow x^2+9x+18-x^2-2x+15=47\)
\(\Leftrightarrow7x+33=47\)
\(\Leftrightarrow7x=14\)
\(\Leftrightarrow x=2\left(tm\right)\)
Vậy phương trình trên có một nghiệm là x = 2
Từ giả thiết ta có thể viết \(f\left(x\right)=g\left(x\right)\left(x+1\right)+5\) (1)
Và \(f\left(x\right)=h\left(x\right)\left(x-2\right)+7\) (2)
Do (x + 1)(x - 2) là đa thức bậc 2 nên số dư là đa thức bậc 1. Tức là:
\(f\left(x\right)=\left(x+1\right)\left(x-2\right)t\left(x\right)+ax+b\) (Với g(x) , h(x), t(x) là các đa thức)
Ta có \(f\left(x\right)=\left(x+1\right)\left(x-2\right)t\left(x\right)+a\left(x+1\right)+b-a=\left(x+1\right)\left[\left(x-2\right)t\left(x\right)+a\right]+b-a\)
Theo (1) thì b - a = 5.
Ta cũng có :
\(f\left(x\right)=\left(x+1\right)\left(x-2\right)t\left(x\right)+a\left(x-2\right)+b+2a=\left(x-2\right)\left[\left(x+1\right)t\left(x\right)+a\right]+b+2a\)
Theo (2) thì b + 2a = 7.
Từ đó ta tìm được \(a=\frac{2}{3};b=\frac{17}{3}\)
= x (chắc thế)
ko đang linh tinh câu hỏi lên đây chị cho phiếu phạt nhá