Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
+) f(x) : (x+2) dư 3
=> Tồn tại đa thức g(x) sao cho: \(f\left(x\right)=\left(x+2\right).g\left(x\right)+3\)(1)
+) f(x) : x2 +2 dư 3x + 1.
=> Tồn tại đa thức h(x) sao cho: \(f\left(x\right)=\left(x^2+2\right).g\left(x\right)+3x+1\)(2)
+) Vì (x + 2)(x^2 + 2) có bậc là 3 => \(f\left(x\right):\left(x+2\right)\left(x^2+2\right)\) có dư là đa thức có bậc là 2
Giả sự số dư là: \(ax^2+bx+c\)
=> Tồn tại đa thức k(x) sao cho: \(f\left(x\right)=\left(x^2+2\right)\left(x+2\right).k\left(x\right)+ax^2+bx+c\)
Có: \(f\left(x\right)=\left(x^2+2\right)\left(x+2\right).k\left(x\right)+a\left(x^2+2\right)+bx+c-2a\)
\(=\left(x^2+2\right)\left[\left(x+2\right).k\left(x\right)+a\right]+bx+c-2a\)(3)
Từ (2), (3) => \(bx+c-2a=3x+1\)=> \(\hept{\begin{cases}b=3\\c-2a=1\end{cases}}\)(4)
Có: \(f\left(x\right)=\left(x^2+2\right)\left(x+2\right).k\left(x\right)+\left(x+2\right).\left(ax+b-2a\right)+c+4a-2b\)
\(=\left(x+2\right)\left(\left(x^2+2\right).k\left(x\right)+\left(ax+b-2a\right)\right)+c+4a-2b\)(5)
Từ (1) và (5) => \(c+4a-2b=3\) (6)
Từ (4) và (6) => c = 11/3; a =4/3 ; b =3
Vậy số dư là: \(\frac{4}{3}x^2+3x+\frac{11}{3}\)
Áp dụng định lý Bezout ta được:
\(f\left(x\right)\)chia cho x+1 dư 4 \(\Rightarrow f\left(-1\right)=4\)
Vì bậc của đa thức chia là 3 nên \(f\left(x\right)=\left(x+1\right)\left(x^2+1\right)q\left(x\right)+ax^2+bx+c\)
\(=\left(x^2+1\right)\left(x+1\right)q\left(x\right)+\left(ax^2+a\right)-a+bx+c\)
\(=\left(x^2+1\right)\left(x+1\right)q\left(x\right)+a\left(x^2+1\right)+bx+c-a\)
\(=\left(x^2+1\right)\left[\left(x+1\right)q\left(x\right)+a\right]+bx+c-a\)
Vì \(f\left(-1\right)=4\)nên \(a-b+c=4\left(1\right)\)
Vì f(x) chia cho \(x^2+1\)dư 2x+3 nên
\(\hept{\begin{cases}b=2\\c-a=3\end{cases}\left(2\right)}\)
Từ (1) và (2) \(\Rightarrow\hept{\begin{cases}a+c=6\\b=2\\c-a=3\end{cases}\Leftrightarrow\hept{\begin{cases}a=\frac{3}{2}\\b=2\\c=\frac{9}{2}\end{cases}}}\)
Vậy dư f(x) chia cho \(\left(x+1\right)\left(x^2+1\right)\)là \(\frac{3}{2}x^2+2x+\frac{1}{2}\)
Gọi đa thức dư khi chia f(x) cho \(\left(x-2\right)\left(x-3\right)\) là \(ax+b\)
\(\Rightarrow f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+ax+b\left(1\right)\)
Lại có \(f\left(x\right):\left(x-2\right)R5\Leftrightarrow f\left(2\right)=5;f\left(x\right):\left(x-3\right)R7\Leftrightarrow f\left(3\right)=7\)
Thế vào \(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}f\left(2\right)=2a+b=5\\f\left(3\right)=3a+b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)
\(\Leftrightarrow f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+2x+1\\ \Leftrightarrow f\left(x\right)=\left(x^2-5x-6\right)\left(x^2-1\right)+2x+1\\ \Leftrightarrow f\left(x\right)=x^4-x^2-5x^3+5x-6x^2+6+2x+1\\ \Leftrightarrow f\left(x\right)=x^4-5x^3-7x^2+7x+7\)
Từ giả thiết ta có thể viết \(f\left(x\right)=g\left(x\right)\left(x+1\right)+5\) (1)
Và \(f\left(x\right)=h\left(x\right)\left(x-2\right)+7\) (2)
Do (x + 1)(x - 2) là đa thức bậc 2 nên số dư là đa thức bậc 1. Tức là:
\(f\left(x\right)=\left(x+1\right)\left(x-2\right)t\left(x\right)+ax+b\) (Với g(x) , h(x), t(x) là các đa thức)
Ta có \(f\left(x\right)=\left(x+1\right)\left(x-2\right)t\left(x\right)+a\left(x+1\right)+b-a=\left(x+1\right)\left[\left(x-2\right)t\left(x\right)+a\right]+b-a\)
Theo (1) thì b - a = 5.
Ta cũng có :
\(f\left(x\right)=\left(x+1\right)\left(x-2\right)t\left(x\right)+a\left(x-2\right)+b+2a=\left(x-2\right)\left[\left(x+1\right)t\left(x\right)+a\right]+b+2a\)
Theo (2) thì b + 2a = 7.
Từ đó ta tìm được \(a=\frac{2}{3};b=\frac{17}{3}\)