Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi giao điểm của đường thẳng \(y=\left(2-m\right)x+3m-m^2\) với trục tung là \(A\left(\dfrac{m^2-3m}{2-m};0\right)\)
Gọi giao điểm của đường thẳng \(y=\left(2-m\right)x+3m-m^2\) với trục hoành là \(B\left(0;3m-m^2\right)\)
\(\text{Ta có: }OB=\tan60^0\cdot OA\\ \Leftrightarrow3m-m^2=\sqrt{3}\cdot\dfrac{m^2-3m}{2-m}\\ \Leftrightarrow3m-m^2-\sqrt{3}\cdot\dfrac{m^2-3m}{2-m}=0\\ \Leftrightarrow m^2-3m+\sqrt{3}\cdot\dfrac{m^2-3m}{2-m}=0\\ \Leftrightarrow\left(m^2-3m\right)\left(1+\dfrac{\sqrt{3}}{2-m}\right)=0\\ \Leftrightarrow m\left(m-3\right)\cdot\dfrac{2-m+\sqrt{3}}{2-m}=0\\ \Leftrightarrow\left[{}\begin{matrix}m=0\\m-3=0\\\dfrac{2-m+\sqrt{3}}{2-m}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=0\\m=3\\2-m+\sqrt{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=0\\m=3\\m=2-\sqrt{3}\end{matrix}\right.\)
Vậy để.......... thì \(m\in\left\{0;3;2-\sqrt{3}\right\}\)
cái này là toán lớp 9 hay 10 vậy bn . để mk còn biết để giải nữa :)
Bài 1:
Gọi A,B lần lượt là giao của (d) với Ox,Oy
=>\(A\left(-\dfrac{1}{m^2+1};0\right);B\left(0;1\right)\)
=>OA=1/|m^2+1|; OB=1
Theo đề, ta có: 1/2*OA*OB=1/8
=>OA*OB=1/4
=>1/|m^2+1|=1/4
=>m^2+1=4
=>m^2=3
hay \(m=\pm\sqrt{3}\)
Đồ thị hàm số đã cho cắt trục hoành tịa điểm có hoành độ bằng \(\frac{3}{4}\)nên
\(0=\left(2-3m\right).\frac{3}{4}+m^2-1\)
\(\Leftrightarrow m^2-\frac{9}{4}m+\frac{1}{2}=0\)
\(\Leftrightarrow4m^2-9m+2=0\)
\(\Leftrightarrow4m^2-8m-m+2=0\)
\(\Leftrightarrow\left(4m-1\right)\left(m-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}m=\frac{1}{4}\\m=2\end{cases}}\).