Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Đặt: (d): y = (m+5)x + 2m - 10
Để y là hàm số bậc nhất thì: m + 5 # 0 <=> m # -5
Để y là hàm số đồng biến thì: m + 5 > 0 <=> m > -5
(d) đi qua A(2,3) nên ta có:
3 = (m+5).2 + 2m - 10
<=> 2m + 10 + 2m - 10 = 3
<=> 4m = 3
<=> m = 3/4
(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:
9 = (m+5).0 + 2m - 10
<=> 2m - 10 = 9
<=> 2m = 19
<=> m = 19/2
(d) đi qua điểm 10 trên trục hoành nên ta có:
0 = (m+5).10 + 2m - 10
<=> 10m + 50 + 2m - 10 = 0
<=> 12m = -40
<=> m = -10/3
(d) // y = 2x - 1 nên ta có:
\(\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}}\) <=> \(\hept{\begin{cases}m=-3\\m\ne\frac{9}{2}\end{cases}}\) <=> \(m=-3\)
Ta thấy b = 2
=> tung độ gốc của h/s y = ..... là 2 hay tọa độ giao điểm của đt vs trục oy là 2
b ) Đt thẳng cắt tại điểm có hoành độ = 2
=> x = 2 ; y =0
Thế vào h/s y = ..... ta được :
0 = ( 3m + 2 ) . 2 + 2
=> m = -1
Vậy để đt cắt trục hoành tại điểm có hoành độ = 2 thì m = -1
Bài toán thỏa mãn khi:
\(\left\{{}\begin{matrix}2-2m>0\\2-2m=m^2-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 1\\m^2+2m-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 1\\\left\{{}\begin{matrix}m=1\\m=-3\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m=-3\)