Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thay x=25 vào biểu thức \(A=\frac{7}{\sqrt{x}+8}\), ta được:
\(A=\frac{7}{\sqrt{25}+8}=\frac{7}{5+8}=\frac{7}{13}\)
Vậy: khi x=25 thì \(A=\frac{7}{13}\)
b) Ta có: \(B=\frac{\sqrt{x}}{\sqrt{x}-3}+\frac{2\sqrt{x}-24}{x-9}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+3\right)+2\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{x+3\sqrt{x}+2\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{x+5\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{x+8\sqrt{x}-3\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+8\right)-3\left(\sqrt{x}+8\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{\left(\sqrt{x}+8\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{\sqrt{x}+8}{\sqrt{x}+3}\)
c) Ta có: \(P=A\cdot B\)
\(=\frac{7}{\sqrt{x}+8}\cdot\frac{\sqrt{x}+8}{\sqrt{x}+3}=\frac{7}{\sqrt{x}+3}\)
ĐKXĐ: \(x\ge0\)
Để P có giá trị nguyên thì \(7⋮\sqrt{x}+3\)
\(\Leftrightarrow\sqrt{x}+3\inƯ\left(7\right)\)
\(\Leftrightarrow\sqrt{x}+3\in\left\{1;-7;-1;7\right\}\)
\(\Leftrightarrow\sqrt{x}+3=7\)(vì \(\sqrt{x}+3\ge3\forall x\ge0\))
\(\Leftrightarrow\sqrt{x}=4\)
hay x=16(nhận)
Vậy: Khi x=16 thì P nguyên
d) Ta có: \(\sqrt{x}+3\ge3\forall x\ge0\)
\(\Leftrightarrow\frac{7}{\sqrt{x}+3}\le\frac{7}{3}\forall x\ge0\)
Dấu '=' xảy ra khi x=0
Vậy: Giá trị lớn nhất của biểu thức \(P=A\cdot B\) là \(\frac{7}{3}\) khi x=0
e) Để \(P=\frac{1}{2}\) thì \(\frac{7}{\sqrt{x}+3}=\frac{1}{2}\)
\(\Leftrightarrow\sqrt{x}+3=7\cdot2=14\)
\(\Leftrightarrow\sqrt{x}=14-3=11\)
hay x=121(nhận)
Vậy: để \(P=\frac{1}{2}\) thì x=121
Đề có sai đâu ko vậy bạn??? . Sao đường thẳng y=x dc nhỉ??
Gọi giao điểm của đường thẳng \(y=\left(2-m\right)x+3m-m^2\) với trục tung là \(A\left(\dfrac{m^2-3m}{2-m};0\right)\)
Gọi giao điểm của đường thẳng \(y=\left(2-m\right)x+3m-m^2\) với trục hoành là \(B\left(0;3m-m^2\right)\)
\(\text{Ta có: }OB=\tan60^0\cdot OA\\ \Leftrightarrow3m-m^2=\sqrt{3}\cdot\dfrac{m^2-3m}{2-m}\\ \Leftrightarrow3m-m^2-\sqrt{3}\cdot\dfrac{m^2-3m}{2-m}=0\\ \Leftrightarrow m^2-3m+\sqrt{3}\cdot\dfrac{m^2-3m}{2-m}=0\\ \Leftrightarrow\left(m^2-3m\right)\left(1+\dfrac{\sqrt{3}}{2-m}\right)=0\\ \Leftrightarrow m\left(m-3\right)\cdot\dfrac{2-m+\sqrt{3}}{2-m}=0\\ \Leftrightarrow\left[{}\begin{matrix}m=0\\m-3=0\\\dfrac{2-m+\sqrt{3}}{2-m}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=0\\m=3\\2-m+\sqrt{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=0\\m=3\\m=2-\sqrt{3}\end{matrix}\right.\)
Vậy để.......... thì \(m\in\left\{0;3;2-\sqrt{3}\right\}\)
cái này là toán lớp 9 hay 10 vậy bn . để mk còn biết để giải nữa :)