K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2023

\(x^4-6x^3+16x^2-22x+16=0\)

\(\Rightarrow x^4-2x^3+3x^2-4x^3+8x^2-12x+5x^2-10x+15+1=0\)

\(\Rightarrow x^2\left(x^2-2x+3\right)-4x\left(x^2-2x+3\right)+5\left(x^2-2x+3\right)x^2+1=0\)

\(\Rightarrow\left(x^2-2x+3\right)\left(x^2-4x+5\right)=-1\)

\(\Rightarrow\left(x^2-2x+1+2\right)\left(x^2-4x+4+1\right)=-1\)

\(\Rightarrow\left[\left(x-1\right)^2+2\right]\left[\left(x-2\right)^2+1\right]=-1\left(1\right)\)

mà \(\left\{{}\begin{matrix}\left(x-1\right)^2+2>0,\forall x\\\left(x-2\right)^2+1>0,\forall x\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left[\left(x-1\right)^2+2\right]\left[\left(x-2\right)^2+1\right]>0,\forall x\\\left[\left(x-1\right)^2+2\right]\left[\left(x-2\right)^2+1\right]=-1\end{matrix}\right.\) (vô lí)

Vậy phương trình trên vô nghiệm (dpcm)

21 tháng 4 2022

\(x^2-6x+70=0\)

\(\Leftrightarrow x^2-6x+9+61=0\)

\(\Leftrightarrow\left(x-3\right)^2+61=0\)

\(\Leftrightarrow\left(x-3\right)^2=-61\) (vô lý)

-Vậy PT vô nghiệm.

16 tháng 12 2021

Bài 1: 

b: \(\Leftrightarrow x-2=0\)

hay x=2

16 tháng 12 2021

anh ơi, vậy là sai đề hả anh, chứ đề kêu chứng minh phương trình vô nghiệm mà em thấy anh ghi x=2

10 tháng 1 2016

 

x4-3x2+6x+13=0

<=>x4-4x2+4+x2+6x+9=0

<=>(x2-2)2+(x-3)2=0

Ta thấy x2-2 khác x-3

=>PT vô nghiệm

10 tháng 1 2016

(x4-4x2+4)+(x2+6x+9)=0

(x2-4)2+(x+3)2=0

Vô nhiệm

 

18 tháng 2 2020

a/ sai đề

18 tháng 2 2020

b/\(\Leftrightarrow\frac{\left|x\right|}{x}=1\Rightarrow\left|x\right|\) cùng dấu x

Đúng với mọi x dương

14 tháng 2 2020

Ta có:

\(VT=\left(x^2+1\right)\left(x^2-x+1\right)\left(x^2-x+2\right)\)

\(pt\Leftrightarrow\left(x^2+1\right)\left(x^2-x+1\right)\left(x^2-x+2\right)=0\)

Mà:

\(x^2+1>0\)

\(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)

\(x^2-x+2=\left(x-\frac{1}{2}\right)^2+\frac{7}{4}>0\)

Vậy pt vô nghiệm

14 tháng 2 2020

Trl

-Bạn kia  làm đúng r nhé !~ :>

Học tốt 

nhé bạn ~

13 tháng 1 2019

\(\left|x-2\right|+\left|x^2-4x+3\right|=0\)

\(\hept{\begin{cases}\left|x-2\right|\ge0\\\left|x^2-4x+3\right|\ge0\end{cases}\text{dấu }=\text{xảy ra khi }}\)

\(\hept{\begin{cases}\left|x-2\right|=0\\\left|x^2-4x+3\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x-2=0\\x^2-4x+3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\\left(x-1\right).\left(x-3\right)=0\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\x=1,x=3\end{cases}}}\)(vô lí)

Vậy phương trình vô nghiệm

p/s: mk ko bt cách trình bài => sai sót bỏ qua

2 tháng 3 2015

...=x^4+x^3+x^2+5x^2+5x+5=x^(x^2+x+1)+5(x^2+x+1)=(x^2+5)(x^2+x+1)>0 (pt vô nghiệm)

23 tháng 2 2019

\(\Leftrightarrow x^4+x^3+x^2+5x^2+5x+5=0\)

\(\Leftrightarrow x^2\left(x^2+x+1\right)+5\left(x^2+x+1\right)=0\)

\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2+5\right)=0\)

\(\Leftrightarrow x^2+x+1=0\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}=0\Leftrightarrow\left(x+\frac{1}{2}\right)^2=-\frac{3}{4}\left(l\right)\)

hay \(x^2+5=0\Leftrightarrow x^2=-5\left(l\right)\)

\(v...S=\varnothing\)