Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2+x\right)^2+4\left(x^2+x\right)=12\)
đặt \(\left(x^2+x\right)=t\) ta có
\(t^2+4t-12=0\)
\(\Leftrightarrow t^2+6t-2t-12=0\)
\(\Leftrightarrow t\left(t+6\right)-2\left(t+6\right)=0\)
\(\Leftrightarrow\left(t-2\right)\left(t+6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t-2=0\\t+6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}t=2\\t=-6\end{cases}}\)
khi đó giả lại biến \(\left(x^2+x\right)\) rồi làm như bình thường
\(\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
Đặt \(x^2+5x=a\)
=> \(\left(a-6\right)\left(a+6\right)=a^2-36\ge-36\)
\(x\left(x+5\right)=0\) thì biểu thức nhỏ nhất
<=> x = 0 hoặc x = -5
WTF đăng một loạt vầy ai dám làm @@
Mấy bài này trong sách bài tập cx có bài mẫu
tự lật sách ra học ik , đăng 1 loạt ai giải cho chép zô hết
1. x2-4x+4+9=(x-4x+4)+9=(x-2)2+9 >=9. nên pt vô nghiệm
2. \(a+b\ge2\sqrt{ab}\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow a^2+2ab+b^2\ge4ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\)( đúng). dpcm
Bài 1:
1.Đặt \(A=x^2+y^2-3x+2y+3\)
\(=x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}+y^2+2y+1+2\)
\(=\left(x-\frac{3}{2}\right)^2+\left(y+1\right)^2-\frac{9}{4}+2\)
\(=\left(x-\frac{3}{2}\right)^2+\left(y+1\right)^2-\frac{1}{4}\)
Vì \(\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2\ge0;\forall x\\\left(y+1\right)^2\ge0;\forall y\end{cases}}\)
\(\Rightarrow\left(x-\frac{3}{2}\right)^2+\left(y+1\right)^2\ge0;\forall x,y\)
\(\Rightarrow\left(x-\frac{3}{2}\right)^2+\left(y+1\right)^2-\frac{1}{4}\ge0-\frac{1}{4};\forall x,y\)
Hay \(A\ge\frac{-1}{4};\forall x,y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=-1\end{cases}}\)
VẬY MIN A=\(\frac{-1}{4}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=-1\end{cases}}\)
1. A = -4 phần x+2
2. 2x^2 + x = 0 => x = 0 hoặc x = -1/2
Với x = 0 thì A = -2
Với x = -1/2 thì A = -8/3
3. A = 1/2 => -4 phần x + 2 = 1/2
<=> -8 = x + 2
<=> x = -10
4. A nguyên dương => A > 0
=> -4 phần x + 2 > 0
Do -4 < 0 nên -4 phần x + 2 > 0 khi x + 2 < 0
=> x < -2
để \(\dfrac{x^3+x^2-x-1}{x^3+2x-3}=0\) thì
x3+x2-x-1=0
=>(x3+x2)-(x+1)=0
=>x2(x+1)-(x+1)=0
=>(x+1)(x2-1)=0
=>(x+1)(x-1)(x+1)=0
=>(x+1)2(x-1)=0
=>\(\left[{}\begin{matrix}x+1=0\\x-1=0\end{matrix}\right.\) =>\(\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)
vậy x=-1 hoặc x=1