\(x^2+y^2+z^2=xy+yz+xz\)

\(x^{2003}+y^{2003}+z^{2003}=3^{2004}...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2021

\(\hept{\begin{cases}x^2+y^2+z^2=xy+yz+xz\left(1\right)\\x^{2003}+y^{2003}+z^{2003}=3^{2004}\left(2\right)\end{cases}}\)

Từ (1) ta có: \(x^2+y^2+z^2=xy+yz+xz\)

\(\Leftrightarrow2x^2+2y^2+2z^2=2xy+2yz+2xz\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2xz+x^2\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)

Vì \(\left(x-y\right)^2\ge0\)\(\left(y-z\right)^2\ge0\)\(\left(x-z\right)^2\ge0\)\(\forall x,y,z\)

\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)\(\forall x,y,z\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}}\Leftrightarrow x=y=z\)

Thay \(x=y=z\)vào (2) ta được: 

\(3.x^{2003}=3^{2004}\)\(\Rightarrow x^{2003}=3^{2003}\)\(\Rightarrow x=3\)\(\Rightarrow x=y=z=3\)

Vậy nghiệm của hệ phương trình trên là \(x=y=z=3\)

20 tháng 2 2016

b) 

nhân 2 vế của (1) với 2

=> ( x -y)2 + ( x -z)2 + ( y-z)2 = 0

=> x =y =z

thay vào (2) => x =y =z = 3

22 tháng 2 2016

Áp dụng BĐT a^2 + b^2 + c^2 >= ab + bc + ca

 x^4 + y^4 + z^4  >= x^2y^2 + y^2z^2 + z^2x^2 >= xy^2z + x^2yz + xyz^2 = xyz(x+y+z) = xyz 

Dấu '' = '' xảy ra khi x = y = z 

Thay vào (1) ta có 3x = 1 <=> x = 1/3 => y = z = 1/3 

   

24 tháng 1 2019

\(\hept{\begin{cases}\left(\frac{x}{\sqrt{2}}-\frac{y}{\sqrt{2}}-\frac{z}{\sqrt{2}}\right)^2+\frac{x^2+y^2+z^2}{3}=0\\x^2+y^2+z^2=3\end{cases}}\)

=>\(\left(\frac{x}{\sqrt{2}}-\frac{y}{\sqrt{2}}-\frac{z}{\sqrt{2}}\right)^2=-\frac{3}{2}\) vo lý

=> hệ vô nghiệm

24 tháng 1 2019

???? Cao Văn  Đức !!!!

Bài làm chả có căn cứ J cả?

11 tháng 12 2017

em vẫn chưa lp 9 nên e ko trả lời đk,em xin lỗi kk

8 tháng 8 2017

\(\left\{{}\begin{matrix}3x^2+xz-yz+y^2=2\left(1\right)\\y^2+xy-yz+z^2=0\left(2\right)\\x^2-xy-xz-z^2=2\left(3\right)\end{matrix}\right.\)

Lấy (2) cộng (3) ta được

\(x^2+y^2-yz-zx=2\) (4)

Lấy (1) - (4) ta được

\(2x\left(x+z\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-z\end{matrix}\right.\)

Xét 2 TH rồi thay vào tìm được y và z

8 tháng 8 2017

1. \(\left\{{}\begin{matrix}6xy=5\left(x+y\right)\\3yz=2\left(y+z\right)\\7zx=10\left(z+x\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x+y}{xy}=\dfrac{6}{5}\\\dfrac{y+z}{yz}=\dfrac{3}{2}\\\dfrac{z+x}{zx}=\dfrac{7}{10}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{6}{5}\\\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{3}{2}\\\dfrac{1}{z}+\dfrac{1}{x}=\dfrac{7}{10}\end{matrix}\right.\)

Đến đây thì dễ rồi nhé

1 tháng 11 2017

ta nhân vế đầu cho 2 ta được:

\(2x^2+2y^2+2z^2=2xy+2yz+2zx\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

mà \(\left(x-y\right)^2>=0;\left(y-z\right)^2>=0;\left(z-x\right)^2>=0\)

dấu "=" xảy ra khi và chỉ khi \(x=y=z\)

thế vào 2 ta có \(x^{2001}+x^{2001}+x^{2001}=3^{2002}\Leftrightarrow x^{2002}=3^{2002}\Leftrightarrow x=3\)