K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2019

 ta có : x - x4 y -25x3y+ 25 x2 y3  +144 xy4-144y5 =77

        <=> x(x-y ) - 25x2y( x-y)  +144y(x-y) =77

        <=> (x-y)(x4-25x2y2+144y4) =77

       <=> (x-y)(x4-16x2y2-9x2y2+144y) =77

       <=> (x-y)(x2-9y2)(x2-16y2 )=77 

đến đây bạn từ chia trường hợp nha 

22 tháng 11 2019

Thoy chia cả đống TH biết đường nào mà lần, bạn có cách nào để loại bớt TH ko giúp mình với  

7 tháng 1 2017

a. \(x^4-10x^3+25x^2-36=0\)

=> \(x^3\left(x-3\right)-7x^2\left(x-3\right)+4x\left(x-3\right)+12\left(x-3\right)=0\)

=>\(\left(x-3\right)\left(x^3-7x^2+4x+12\right)=0\)

=>\(\left(x-3\right)\left[x^2\left(x-2\right)-5x\left(x-2\right)-6\left(x-2\right)\right]=0\)=> \(\left(x-3\right)\left(x-2\right)\left(x^2-5x-6\right)=0\)

=> \(\left(x-3\right)\left(x-2\right)\left(x+1\right)\left(x-6\right)=0\)

=>\(\left[\begin{matrix}x=3\\x=2\\x=-1\\x=6\end{matrix}\right.\)

b) \(x^4\) - \(^{9x^2}\) - 24x - 16 = 0

=> \(x^3\left(x-4\right)+4x^2\left(x-4\right)+7x\left(x-4\right)+4\left(x-4\right)=0\)=>\(\left(x-4\right)\left(x^3+4x^2+7x+4\right)=0\)

=> \(\left(x-4\right)\left[x^2\left(x+1\right)+3x\left(x+1\right)+4\left(x+1\right)\right]=0\)=>\(\left(x-4\right)\left(x+1\right)\left(x^2+3x+4\right)=0\)

=> \(\left(x-4\right)\left(x+1\right)=0\) (vì x^2 + 3x + 4> 0)

=>\(\left[\begin{matrix}x=4\\x=-1\end{matrix}\right.\)

7 tháng 1 2017

a,pt\(\Leftrightarrow\left(x^4-10x^3+25x\right)-36=0\)\(\Leftrightarrow\left(x^2-5x\right)^2-36=0\)

\(\Leftrightarrow\left(x^2-5x-6\right)\left(x^2-5x+6\right)=0\)\(\Leftrightarrow\left[\begin{matrix}x^2-5x-6=0\\x^2-5x+6=0\end{matrix}\right.\)

\(\Leftrightarrow\left[\begin{matrix}\left(x+1\right)\left(x-6\right)=0\\\left(x-2\right)\left(x-3\right)=0\end{matrix}\right.\)\(\Leftrightarrow\left[\begin{matrix}x=-1,x=6\\x=2,x=3\end{matrix}\right.\)

vậy pt có 4 nghiệm x=(-1,6,2,3)

12 tháng 7 2018

a. \(x^4-4x^3+8x^2-16x+16\)

\(=x^4-2x^3-2x^3+4x^2+4x^2-8x-8x+16\)

\(=x^3\left(x-2\right)-2x^2\left(x-2\right)+4x\left(x-2\right)-8\left(x-2\right)\)

\(=\left(x-2\right)\left(x^3-2x^2+4x-8\right)\)

\(=\left(x-2\right)\left[x^2\left(x-2\right)+4\left(x-2\right)\right]\)

\(=\left(x-2\right)^2\left(x^2+4\right)\)

b. \(x^4-25x^2+20x-4\)

\(=x^4+5x^3-5x^3-25x^2+2x^2-2x^2+10x+10x-4\)

\(=\left(x^4+5x^3-2x^2\right)-\left(5x^3+25x^2-10x\right)+\left(2x^2+10x-4\right)\)

\(=x^2\left(x^2+5x-2\right)-5x\left(x^2+5x-2\right)+2\left(x^2+5x-2\right)\)

\(=\left(x^2+5x-2\right)\left(x^2-5x+2\right)\)

27 tháng 12 2018

Hn thi mx ra câu này T.T

6 tháng 10 2015

Gọi A(xo;yo) là giao điểm của (C) và (P)

Phương trình hoàng dộ giao điểm của (C) và (P)

x4-x3+2=25x2-7x-4

<=>x4-x3-25x2+7x+6=0

(x2-5x-2)(x2+4x-3)

*x2-5x-2

\(\Delta=\left(-5\right)^2-4.1.\left(-2\right)=17\)

\(\Delta>0,\text{phương trình có 2 nghiệm phân biệt}\)

=>\(x_1=\frac{-\left(-5\right)+\sqrt{17}}{2}=\frac{5+\sqrt{17}}{2}\)

\(x_2=\frac{-\left(-5\right)-\sqrt{17}}{2}=\frac{5-\sqrt{17}}{2}\)

*x2+4x-3 (tương tự PT trên)

Sau khi tìm dc tất cả các x thay vào 1 đường thằng nào đó tìm các y 

=>kết luận

a: \(=\left(x-\sqrt{11}\right)\left(x+\sqrt{11}\right)\)

b: \(=\left(x-\sqrt{2}\right)^2\)

c: \(=\left(\sqrt{x}-\sqrt{5}\right)\left(\sqrt{x}+\sqrt{5}\right)\)

d: \(=\left(\sqrt{5}-x\sqrt{7}\right)\left(\sqrt{5}+x\sqrt{7}\right)\)

e: \(=\left(x-\sqrt{23}\right)^2\)

23 tháng 6 2015

4 nghiệm
-1; 2; 3; 6

15 tháng 4 2017

https://h.vn/hoi-dap/question/238231.html?pos=815256