Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) Tính giá trị của x2 + 4x - 1 tại x = -2 + \(\sqrt{5}\)
=> (-2 + \(\sqrt{5}\)) 2 + 4.(-2 + \(\sqrt{5}\)) - 1 = 4 - 4\(\sqrt{5}\) + 5 - 8 + 4\(\sqrt{5}\) - 1 = 0
Vậy x2 + 4x - 1 = 0 tại x = -2 + \(\sqrt{5}\)
+) A = 3x3.(x2 + 4x - 1 ) - 5x3 - 23x2 - 7x + 1
= 3x3.(x2 + 4x - 1 ) - 5x.(x2 + 4x - 1) - 3x2 - 12x + 1
= (3x3 - 5x).(x2 + 4x - 1 ) - 3.(x2 + 4x -1) - 2 = (3x3 - 5x - 3).(x2 + 4x - 1 ) - 2
Vậy tại x = - 2 + \(\sqrt{5}\) thì A = - 2
+) A = (3x3 - 5x - 3).(x2 + 4x - 1 ) - 2 chia cho (x2 + 4x - 1 ) dư - 2
Bài làm:
a) \(x^2-7=\left(x-\sqrt{7}\right)\left(x+\sqrt{7}\right)\)
b) \(4x^2-5=\left(2x-\sqrt{5}\right)\left(2x+\sqrt{5}\right)\)
c) \(3x^2-1=\left(x\sqrt{3}-1\right)\left(x\sqrt{3}+1\right)\)
d) \(x-1=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)
e) \(x-4=\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\)
f) \(9x-4=\left(3\sqrt{x}-2\right)\left(3\sqrt{x}+2\right)\)
a) => 5x^2 - 3 = 2 hoặc 5x^2 - 3 = -2
=> 5x^2 = 5 hoặc 5x^2 = 1
b) pt <=> l(x-1)^2l = x + 2
VÌ ( x - 1 )^2 >= 0 => l( x - 1 )^2 l = ( x- 1 )^2
pt <=> x^2 - 2x + 1 = x + 2 <=>
x^2 - 3x - 1 = 0
c) l2x-5l - l2x^2 - 7x + 5 l = 0
<=> l2x-5l - l ( 2x-5)(x-1) l = 0
<=> l2x-5l ( 1 - l x - 1 l = 0
<=> l 2x - 5 l = 0 hoặc 1 - l x - 1 l = 0
d); e lập bảng xét dấu sau đó xét ba trường hợ p ra
a. \(\Leftrightarrow\left(2x-5\right)\left(2x+5\right)\left(x+1\right)\left(2x-9\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-5=0\\2x+5=0\\x+1=0\\2x-9=0\end{matrix}\right.\) \(\Rightarrow x=\)
b. \(\Leftrightarrow x^3+x+3x^2+3=0\)
\(\Leftrightarrow x\left(x^2+1\right)+3\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+1=0\left(vn\right)\end{matrix}\right.\)
c. \(\Leftrightarrow2x\left(3x-1\right)^2-\left(9x^2-1\right)=0\)
\(\Leftrightarrow\left(6x^2-2x\right)\left(3x-1\right)-\left(3x-1\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(6x^2-5x-1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x-1\right)\left(6x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\x-1=0\\6x+1=0\end{matrix}\right.\)
d.
\(\Leftrightarrow x^3-3x^2+2x-3x^2+9x-6=0\)
\(\Leftrightarrow x\left(x^2-3x+2\right)-3\left(x^2-3x+2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2-3x+2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-1=0\\x-2=0\end{matrix}\right.\)
e.
\(\Leftrightarrow x^3+2x^2+x+3x^2+6x+3=0\)
\(\Leftrightarrow x\left(x^2+2x+1\right)+3\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x+1\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x+1=0\end{matrix}\right.\)
Dạng tổng quát:
Muốn tính giá trị của f(a), ta tách : f(a) = g(a).t(a) + h(a) sao cho g(a) = 0. Khi đó ta có: f(a) = h(a) với h(x) là phần dư của phép chia f(x) cho g(x).
Khi làm nhiều ta nhẩm được pt bậc hai nhận nghiệm \(-2+\sqrt{5}\) là pt \(x^2+4x-1=0\)
b)\(9\left(x-2\right)^2-4\left(x-1\right)^2=\left(9x^2-36x+36\right)-\left(4x^2+8x-4\right)\)
\(=9x^2-36x+36-4x^2+8x-4\)
\(=5x^2-28x+32\)
\(=\left(x-5\right)\left(5x-8\right)\)
\(\hept{\begin{cases}x-5=0\\5x-8=0\end{cases}\Rightarrow}\hept{\begin{cases}x=5\\x=\frac{8}{5}=1\frac{3}{5}\end{cases}}\)
a) \(\left(x+1\right)^2-4\left(x^2-2x+1\right)=0\)
\(\left(x^2+2x+1\right)-\left(4x^2-8x+4\right)=0\)
\(-3x^2+10x-3=0\)
\(\left(3-x\right)\left(3x-1\right)=0\)
\(\hept{\begin{cases}3-x=0\\3x-1=0\end{cases}}\)
\(\hept{\begin{cases}x=3\\x=\frac{1}{3}\end{cases}}\)
a: \(=\left(x-\sqrt{11}\right)\left(x+\sqrt{11}\right)\)
b: \(=\left(x-\sqrt{2}\right)^2\)
c: \(=\left(\sqrt{x}-\sqrt{5}\right)\left(\sqrt{x}+\sqrt{5}\right)\)
d: \(=\left(\sqrt{5}-x\sqrt{7}\right)\left(\sqrt{5}+x\sqrt{7}\right)\)
e: \(=\left(x-\sqrt{23}\right)^2\)