K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2017

Ta có:  x^3 + y^3 + xy= (x+y)^3 - 3xy(x+y) + xy

                                  = 1 - 3xy + xy

                                  =  1- 2xy

                                  =  1 - 2xy + (xy)^2 - (xy)^2

                                  = (1 - xy)^2  - (xy)^2

                                  =  (1 - xy + xy)(1-xy-xy)

                                  =  1-2xy  >=  1/2

 Vậy MinA = 1/2 

12 tháng 8 2023

Ta có:

VT: \(\left(xy+1\right)\left(x^2y^2-xy+1\right)+\left(x^3-1\right)\left(1-y^3\right)\)

\(=\left(xy\right)^3+1^3+x^3-x^3y^3-1+y^3\)

\(=x^3y^3+1+x^3-x^3y^3-1+y^3\)

\(=\left(x^3y^3-x^3y^3\right)+\left(1-1\right)+\left(x^3+y^3\right)\)

\(=x^3+y^3=VP\left(dpcm\right)\)

19 tháng 7 2023

\(x+y=a\left(1\right)\)

\(x-y=b\left(2\right)\)

\(\left(1\right)+\left(2\right)\Rightarrow2x=a+b\Rightarrow x=\dfrac{a+b}{2}\)

\(\left(1\right)\Rightarrow y=a-x\Rightarrow y=a-\dfrac{a+b}{2}\Rightarrow y=\dfrac{a-b}{2}\)

\(xy=\dfrac{\left(a+b\right)}{2}.\dfrac{\left(a-b\right)}{2}=\dfrac{a^2-b^2}{4}\)

\(x^3-y^3=\left(\dfrac{a+b}{2}\right)^3-\left(\dfrac{a-b}{2}\right)^3=\dfrac{\left(a+b\right)^3}{8}-\dfrac{\left(a-b\right)^3}{8}\)

\(=\dfrac{\left(a+b\right)^3-\left(a-b\right)^3}{8}\)

\(=\dfrac{\left(a+b-a+b\right)\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]}{8}\)

\(=\dfrac{2b\left[a^2+b^2+2ab+a^2-b^2+a^2+b^2-2ab\right]}{8}\)

\(=\dfrac{b\left[3a^2+b^2+2ab\right]}{4}\)

19 tháng 7 2023

\(\left\{{}\begin{matrix}x+y=a\\x-y=b\end{matrix}\right.\) tính \(x^3\) - y3 theo \(a\) và \(b\)

⇒ \(\left\{{}\begin{matrix}x+y+x-y=a+b\\x-y=b\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}2x=a+b\\y=x-b\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}x=\left(a+b\right):2\\y=\left(a-b\right):2\end{matrix}\right.\) ⇒ \(xy\) = \(\dfrac{a+b}{2}\)\(\times\)\(\dfrac{a-b}{2}\) = \(\dfrac{a^2-b^2}{4}\)

\(x^{3^{ }}\) - y3 = (\(x\) - y)(\(x^2\) + \(x\)y + y2) = \(\left(x-y\right)\)\(\left(\left[x+y\right]^2-xy\right)\) (1)

Thay \(x-y\) = a; \(x\) + y = b và \(xy\) = \(\dfrac{a^2-b^2}{4}\) vào (1) ta có:

\(x^3\) - y3 = b.(a2 - \(\dfrac{a^2-b^2}{4}\)) = b.\(\dfrac{3a^2+b^2}{4}\) = \(\dfrac{3a^2b+b^3}{4}\)

 

 

 

  

 

1) 

Ta có: x+y=2

nên \(\left(x+y\right)^2=4\)

\(\Leftrightarrow x^2+y^2+2xy=4\)

\(\Leftrightarrow2xy=2\)

hay xy=1

Ta có: \(x^3+y^3\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)\)

\(=2^3-3\cdot1\cdot2\)

=2

2)\(x^2+y^2=\left(x+y\right)^2-2xy=8^2-2\cdot\left(-20\right)=104\)

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=8^3-3\cdot\left(-20\right)\cdot8=512+480=992\)

\(x^2+y^2+xy=\left(x+y\right)^2-xy=8^2-\left(-20\right)=64+20=84\)

AH
Akai Haruma
Giáo viên
11 tháng 7 2021

Lời giải:
a.

$x^3+y^3=(x+y)^3-3xy(x+y)=9^3-3.9.18=243$

$x^4+y^4=(x^2+y^2)^2-2x^2y^2=[(x+y)^2-2xy]^2-2x^2y^2$

$=[9^2-2.18]^2-2.18^2=1377$

Nếu $x\geq y$ thì:

$x^3-y^3=(x-y)(x^2+xy+y^2)$

$=|x-y|[(x+y)^2-xy]=\sqrt{(x+y)^2-4xy}[(x+y)^2-xy]$

$=\sqrt{9^2-4.18}(9^2-18)=189$

Nếu $x< y$ thì $x^3-y^3=-189$

b.

$A=(x+y)^2-6(x+y)+y-5$

$=(-9)^2-6(-9)+y-5=130+y$

Chưa đủ cơ sở để tính biểu thức.

11 tháng 7 2021

cảm ơn bnhihi

3 tháng 8 2023

a) \(\left(x-5\right)^2=\left(3+2x\right)^2\)

\(\Rightarrow\left(3+2x\right)^2-\left(x-5\right)^2=0\)

\(\Rightarrow\left(3+2x+x-5\right)\left(3+2x-x+5\right)=0\)

\(\Rightarrow\left(3x-2\right)\left(x+8\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}3x-2=0\\x+8=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-8\end{matrix}\right.\)

b) \(27x^3-54x^2+36x=9\)

\(\Rightarrow27x^3-54x^2+36x-9=0\)

\(\Rightarrow27x^3-54x^2+36x-8+8-9=0\)

\(\Rightarrow\left(3x-2\right)^3-1=0\)

\(\Rightarrow\left(3x-2-1\right)\left[\left(3x-2\right)^2+3x-2+1\right]=0\)

\(\Rightarrow\left(3x-3\right)\left[\left(3x-2\right)^2+3x-2+\dfrac{1}{4}-\dfrac{1}{4}+1\right]=0\)

\(\Rightarrow\left(3x-3\right)\left[\left(3x-2+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]=0\)

\(\Rightarrow\left(3x-3\right)\left[\left(3x-\dfrac{3}{2}\right)^2+\dfrac{3}{4}\right]=0\left(1\right)\)

mà \(\left(3x-\dfrac{3}{2}\right)^2+\dfrac{3}{4}>0,\forall x\)

\(\left(1\right)\Rightarrow3x-3=0\Rightarrow3x=3\Rightarrow x=1\)

3 tháng 8 2023

(\(x-5\))2 = (3 +2\(x\))2 ⇒ \(\left[{}\begin{matrix}x-5=3+2x\\x-5=-3-2x\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=-8\\x=\dfrac{2}{3}\end{matrix}\right.\) vậy \(x\in\){-8; \(\dfrac{2}{3}\)}

  27\(x^3\) - 54\(x^2\) + 36\(x\) = 9

27\(x^3\) - 54\(x^2\) + 36\(x\) - 8 = 1

(3\(x\) - 2)3 = 1 ⇒ 3\(x\) - 2 = 1 ⇒ \(x\) = 1

 

 

 

 

 

3 tháng 8 2023

(x - 5)² = (3 + 2x)²

(x - 5)² - (3 + 2x)² = 0

[(x - 5) - (3 + 2x)][(x - 5) + (3 + 2x)] = 0

(x - 5 - 3 - 2x)(x - 5 + 3 + 2x) = 0

(-x - 8)(3x - 2) = 0

-x - 8 = 0 hoặc 3x - 2 = 0

*) -x - 8 = 0

-x = 8

x = -8

*) 3x - 2 = 0

3x = 2

x = 2/3

Vậy x = -8; x = 2/3

--------------------

27x³ - 54x² + 36x = 9

27x³ - 54x² + 36x - 9 = 0

27x³ - 27x² - 27x² + 27x + 9x - 9 = 0

(27x³ - 27x²) - (27x² - 27x) + (9x - 9) = 0

27x²(x - 1) - 27x(x - 1) + 9(x - 1) = 0

(x - 1)(27x² - 27x + 9) = 0

x - 1 = 0 hoặc 27x² - 27x + 9 = 0

*) x - 1 = 0

x = 1

*) 27x² - 27x + 9 = 0

Ta có:

27x² - 27x + 9

= 27(x² - x + 1/3)

= 27(x² - 2.x.1/2 + 1/4 + 1/12)

= 27[(x - 1/2)² + 1/12] > 0 với mọi x ∈ R

⇒ 27x² - 27x + 9 = 0 (vô lí)

Vậy x = 1

3 tháng 8 2023

A = x² + y²

= x² - 2xy + y² + 2xy

= (x - y)² + 2xy

= 4² + 2.1

= 16 + 2

= 18

B = x³ - y³

= (x - y)(x² + xy + y²)

= (x - y)(x² - 2xy + y² + xy + 2xy)

= (x - y)[(x - y)² + 3xy]

= 4.(4² + 3.1)

= 4.(16 + 3)

= 4.19

= 76

C = x⁴ + y⁴

= (x²)² + (y²)²

= (x²)² + 2x²y² + (y²)² - 2x²y²

= (x² + y²)² - 2x²y²

= (x² - 2x²y² + y² + 2x²y²)² - 2x²y²

= [(x - y)² + 2x²y²]² - 2x²y²

= (4² + 2.1²)² - 2.1²

= (16 + 2)² - 2

= 18² - 2

= 324 - 2

= 322

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)\)

\(=24^3-3\cdot24\cdot18\)

\(=13824-1296\)

=12528