K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2023

Ta có:

VT: \(\left(xy+1\right)\left(x^2y^2-xy+1\right)+\left(x^3-1\right)\left(1-y^3\right)\)

\(=\left(xy\right)^3+1^3+x^3-x^3y^3-1+y^3\)

\(=x^3y^3+1+x^3-x^3y^3-1+y^3\)

\(=\left(x^3y^3-x^3y^3\right)+\left(1-1\right)+\left(x^3+y^3\right)\)

\(=x^3+y^3=VP\left(dpcm\right)\)

17 tháng 7 2018

a/ \(x^2-6x+10=x^2-2.x.3+3^2+1=\left(x-3\right)^2+1\)

Với mọi x ta có :

\(\left(x-3\right)^2\ge0\)

\(\Leftrightarrow\left(x-3\right)^2+1>0\)

\(\Leftrightarrow x^2-6x+10>0\)

b/ \(x^2-4x+7=x^2-2.x.2+2^2+3=\left(x-2\right)^2+3\)

Với mọi x ta có :

\(\left(x-2\right)^2\ge0\)

\(\Leftrightarrow\left(x-2\right)^2+3\ge3\)

\(\Leftrightarrow x^2-4x+7\ge3\left(đpcm\right)\)

c/ \(x^2+x+1=x^2+2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Với mọi x ta có :

\(\left(x+\dfrac{1}{2}\right)^2\ge0\)

\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

\(\Leftrightarrow x^2+x+1>0\left(đpcm\right)\)

d/ \(x^2+y^2+4x-6y+15=\left(x^2+4x+2^2\right)+\left(y^2-6y+3^2\right)+2=\left(x+2\right)^2+\left(y-3\right)^2+2\)

Với mọi x,y ta có :

\(\left\{{}\begin{matrix}\left(x+2\right)^2\ge0\\\left(y-3\right)^2\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left(x+2\right)^2+\left(y-3\right)^2\ge0\)

\(\Leftrightarrow\left(x+2\right)^2+\left(y-3\right)^2+2\ge0\)

\(\Leftrightarrow x^2+y^2+4x-6y+15>0\left(đpcm\right)\)

17 tháng 7 2018

2/ Ta có :

\(\left(a+b\right)^2-4ab=a^2+2ab+b^2-4ab=a^2-2ab+b^2=\left(a-b\right)^2\)

Vậy \(\left(a-b\right)^2=\left(a+b\right)^2-4ab\left(đpcm\right)\)

3/ \(x^2+y^2=x^2+y^2+2xy-2xy=\left(x+y\right)^2-2xy\)

\(x+y=7;xy=-3\)

\(\Leftrightarrow x^2+y^2=7^2-2.\left(-3\right)=49+6=55\)

22 tháng 8 2018

\(1.5x\left(x^2+2x-1\right)-3x^2\left(x-2\right)=5x^3+10x^2-5x-3x^3+6x^2\)

                                                                  \(=2x^3+16x^2-5x\)

                                                                  \(=\left(2x^3-x\right)+\left(16x^2-4x\right)\)

                                                                  \(=x\left(2x^2-1\right)+4x\left(4x-1\right)\left(ĐCCM\right)\)

25 tháng 8 2020

a) \(A=x^2y+y+xy^2-x\) (hẳn đề là vậy)

\(A=xy\left(x+y\right)+\left(y-x\right)\)

\(A=\left(-5\right).2\left(-5+2\right)+2+5\)

\(A=30+7=37\)

b) \(B=3x^3-2y^3-6x^2y^2+xy\)

\(B=3.\left(\frac{2}{3}\right)^3-2.\left(\frac{1}{2}\right)^3-6.\left(\frac{2}{3}\right)^2.\left(\frac{1}{2}\right)^2+\frac{2}{3}.\frac{1}{2}\)

\(B=\frac{8}{9}-\frac{1}{4}-\frac{2}{3}+\frac{1}{3}\)

\(B=\frac{11}{36}\)

c) \(C=2x+xy^2-x^2y-2y\)

\(C=2.\left(-\frac{1}{2}\right)+\left(-\frac{1}{2}\right).\left(-\frac{1}{3}\right)^2-\left(-\frac{1}{2}\right)^2.\left(-\frac{1}{3}\right)-2.\left(-\frac{1}{3}\right)\)

\(C=-1-\frac{1}{18}+\frac{1}{12}+\frac{2}{3}\)

\(C=-\frac{11}{36}\)

27 tháng 11 2022

a: \(=\dfrac{4x^2+4x+1-4x^2+4x-1}{\left(2x+1\right)\left(2x-1\right)}\cdot\dfrac{5\left(2x-1\right)}{4x}\)

\(=\dfrac{8x\cdot5}{4x\left(2x+1\right)}=\dfrac{10}{2x+1}\)

b: \(=\left(\dfrac{1}{x^2+1}+\dfrac{x-2}{x+1}\right):\dfrac{1+x^2-2x}{x}\)

\(=\dfrac{x+1+x^3+x-2x^2-2}{\left(x+1\right)\left(x^2+1\right)}\cdot\dfrac{x}{\left(x-1\right)^2}\)

\(=\dfrac{x^3-2x^2+2x-1}{\left(x+1\right)\left(x^2+1\right)}\cdot\dfrac{x}{\left(x-1\right)^2}\)

\(=\dfrac{\left(x-1\right)\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2+1\right)}\cdot\dfrac{x}{\left(x-1\right)^2}\)

\(=\dfrac{x\left(x^2-x+1\right)}{\left(x^2-1\right)\left(x^2+1\right)}\)

c: \(=\dfrac{1}{x-1}-\dfrac{x^3-x}{x^2+1}\cdot\left(\dfrac{1}{\left(x-1\right)^2}-\dfrac{1}{\left(x-1\right)\left(x+1\right)}\right)\)

\(=\dfrac{1}{x-1}-\dfrac{x\left(x-1\right)\left(x+1\right)}{x^2+1}\cdot\dfrac{x+1-x+1}{\left(x-1\right)^2\cdot\left(x+1\right)}\)

\(=\dfrac{1}{x-1}-\dfrac{x}{x^2+1}\cdot\dfrac{2}{\left(x-1\right)}\)

\(=\dfrac{x^2+1-2x}{\left(x-1\right)\left(x^2+1\right)}=\dfrac{x-1}{x^2+1}\)

17 tháng 7 2018

2.

Ta có hằng đẳng thức : \(\left(a-b\right)^2=a^2-2ab+b^2\left(1\right)\)

Lại có  \(\left(a+b\right)^2=a^2+2ab+b^2\)

\(\Rightarrow\left(a+b\right)^2-4ab=a^2+2ab-4ab+b^2\)

\(\Leftrightarrow\left(a+b\right)^2-4ab=a^2-2ab+b^2\left(2\right)\)

Từ (1) và (2)  \(\Rightarrow\left(a-b\right)^2=\left(a+b\right)^2-4ab\)( đpcm )

3.

Ta có hằng đẳng thức  \(\left(x+y\right)^2=x^2+2xy+y^2\)

\(\Rightarrow x^2+y^2=\left(x+y\right)^2-2xy\)

Thay  \(x+y=7\)và  \(xy=-3\)vào ta được :

\(x^2+y^2=7^2-2\left(-3\right)\)

\(\Leftrightarrow x^2+y^2=49+6=55\)

Vậy ...

17 tháng 7 2018

1. 

a) Đặt  \(A=x^2-6x+10\)

\(A=\left(x^2-6x+9\right)+1\)

\(A=\left(x-3\right)^2+1\)

Mà  \(\left(x-3\right)^2\ge0\forall x\)

\(\Rightarrow A\ge1>0\)

Vậy ...

b) Đặt \(B=x^2-4x+7\)

\(B=\left(x^2-4x+4\right)+3\)

\(B=\left(x-2\right)^2+3\)

Mà  \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow B\ge3\)

Vậy ...

31 tháng 8 2018

a)   \(\left(x-1\right)\left(x^2+x+1\right)=x\left(x^2+x+1\right)-\left(x^2+x+1\right)\)

\(=x^3+x^2+x-x^2-x-1=x^3-1\)   đpcm

b) \(x^4-y^4=\left(x^2-y^2\right)\left(x^2+y^2\right)\)

\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)=\left(x-y\right)\left[x\left(x^2+y^2\right)+y\left(x^2+y^2\right)\right]\)

\(=\left(x-y\right)\left(x^3+xy^2+x^2y+y^3\right)\) đpcm

a: \(=n^3+2n^2+3n^2+6n-n-2-n^3+5\)

\(=5n^2+5n+3⋮̸5\)

b:\(=6n^2+30n+n+5-6n^2+3n-10n+5\)

\(=24n+10=2\left(12n+5\right)⋮2\)

d: \(=4x^2y^2-2x^2y+2xy^2-xy-4x^2y^2+xy\)

\(=-2\left(x^2y-xy^2\right)⋮2\)

12 tháng 8 2017

a, x^2 + xy + y^2 + 1 

= (x+y/4) ^2 + 3/4.y^2 + 1 >= 1 > 0