\(\frac{ab}{c+1}+\frac{bc}{a+1}+\frac{ac}{a+1}<\frac{1}{4}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2015

la \(\le\) ko phai la <

14 tháng 12 2015

\(\frac{a+b}{ab}\ge\frac{4}{a+b}\)=>\(a+b\ge\frac{4ab}{a+b}\Leftrightarrow\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)

=>\(\frac{ab}{c+1}=\frac{ab}{a+c+b+c}\le\frac{ab}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\)

=>\(\frac{ab}{c+1}+\frac{bc}{a+1}+\frac{ac}{b+1}\le\frac{1}{4}\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{bc}{a+b}+\frac{bc}{a+c}+\frac{ac}{a+b}+\frac{ac}{b+c}\right)\)

                                             =\(\frac{1}{4}\left(a+b+c\right)=\frac{1}{4}\)

dau bang xay ra <=>a=b=c=\(\frac{1}{3}\)

17 tháng 8 2017

a)Áp dụng BĐT AM-GM ta có

\(\frac{ab\sqrt{ab}}{a+b}\le\frac{ab\sqrt{ab}}{2\sqrt{ab}}=\frac{ab}{2}\)

Tương tự cho 2 BĐT còn lại cũng có:

\(\frac{bc\sqrt{bc}}{b+c}\le\frac{bc}{2};\frac{ac\sqrt{ac}}{a+c}\le\frac{ac}{2}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT=Σ\frac{ab\sqrt{ab}}{a+b}\le\frac{ab+bc+ca}{2}=VP\)

Khi \(a=b=c\)

b)Áp dụng tiếp AM-GM:

\(b\sqrt{a-1}\le\frac{b\left(a-1+1\right)}{2}=\frac{ab}{2}\)

\(a\sqrt{b-1}\le\frac{a\left(b-1+1\right)}{2}=\frac{ab}{2}\)

Cộng theo vế 2 BĐT trên ta có:

\(VT=b\sqrt{a-1}+a\sqrt{b-1}\le ab=VP\)

Khi \(a=b=1\)

NV
13 tháng 7 2020

\(a+b+c=abc\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow xy+yz+zx=1\)

\(VT=\frac{x^2yz}{1+yz}+\frac{xy^2z}{1+zx}+\frac{xyz^2}{1+xy}=\frac{x^2yz}{xy+yz+yz+zx}+\frac{xy^2z}{xy+zx+yz+zx}+\frac{xyz^2}{xy+yz+xy+zx}\)

\(VT\le\frac{1}{4}\left(\frac{x^2yz}{xy+yz}+\frac{x^2yz}{yz+zx}+\frac{xy^2z}{xy+zx}+\frac{xy^2z}{yz+zx}+\frac{xyz^2}{xy+yz}+\frac{xyz^2}{xy+zx}\right)\)

\(VT\le\frac{1}{4}\left(\frac{x^2y}{x+y}+\frac{xy^2}{x+y}+\frac{y^2z}{y+z}+\frac{yz^2}{y+z}+\frac{x^2z}{x+z}+\frac{xz^2}{x+z}\right)\)

\(VT\le\frac{1}{4}\left(xy+yz+zx\right)=\frac{1}{4}\)

Dấu "=" xảy ra khi \(a=b=c=\sqrt{3}\)

12 tháng 2 2017

A B C D E c b

giả sử AD là đường phân giác kẻ từ A, AB=c,AC=b

từ B kẻ BE//AD cắt tia đối của AC ở E

dễ dàng chứng minh được tam giác ABE cân ở A=> AB=AE=c

áp dụng hệ quả định lý tales:AD//BE\(\Rightarrow\frac{AD}{BE}=\frac{AC}{CE}\Leftrightarrow\frac{l_a}{BE}=\frac{b}{b+c}\)

mà BE<AB+AE=2c(BĐT tam giác)

=>\(\frac{b}{b+c}>\frac{l_a}{2c}\Rightarrow l_a< \frac{2bc}{b+c}\Rightarrow\frac{1}{l_a}>\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)\)

tương tự:\(\frac{1}{l_b}>\frac{1}{2}\left(\frac{1}{a}+\frac{1}{c}\right)\);\(\frac{1}{l_c}>\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

cả 2 vế đều dương,cộng vế với vế:\(\frac{1}{l_a}+\frac{1}{l_b}+\frac{1}{l_c}>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

NV
20 tháng 6 2019

Ta chứng minh được

\(a^4+b^4\ge ab\left(a^2+b^2\right)\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

\(\Rightarrow P\le\sum\frac{ab}{ab\left(a^2+b^2\right)+ab}=\sum\frac{1}{a^2+b^2+1}\)

Đặt \(\left(a^2;b^2;c^2\right)=\left(x^3;y^3;z^3\right)\Rightarrow xyz=1\)

Ta lại chứng minh được:

\(x^3+y^3\ge xy\left(x+y\right)\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\)

\(\Rightarrow P\le\sum\frac{1}{x^3+y^3+1}\le\sum\frac{xyz}{xy\left(x+y\right)+xyz}=\sum\frac{z}{x+y+z}=1\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Đây là bài thi vào 10 của Thanh Hóa thì phải

20 tháng 6 2019

Anh ơi sao e ko nhắn đc cho anh nhỉ??!