\(\frac{1}{3}\)<=a,b,c<=1.CMR  0,5<=\(\frac{a}{1+bc}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2017

A B C D E x

Qui ước: Ax là p.g của A , đường vuông góc BD,CE

Ta có: \(\sin\frac{A}{2}=\frac{BD}{AB}=\frac{CE}{AC}=\frac{BD+CE}{AB+CA}\)(t/c dãy ts = nhau)

dễ dàng chứng minh \(BD+CE\le BC\)nên ta có đpcm

Dấu = xảy ra khi tam giác ABC cân ở A

19 tháng 7 2017

 tắt quá . mà có 2 phần mà sao ngắn vậy

12 tháng 2 2017

A B C D E c b

giả sử AD là đường phân giác kẻ từ A, AB=c,AC=b

từ B kẻ BE//AD cắt tia đối của AC ở E

dễ dàng chứng minh được tam giác ABE cân ở A=> AB=AE=c

áp dụng hệ quả định lý tales:AD//BE\(\Rightarrow\frac{AD}{BE}=\frac{AC}{CE}\Leftrightarrow\frac{l_a}{BE}=\frac{b}{b+c}\)

mà BE<AB+AE=2c(BĐT tam giác)

=>\(\frac{b}{b+c}>\frac{l_a}{2c}\Rightarrow l_a< \frac{2bc}{b+c}\Rightarrow\frac{1}{l_a}>\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)\)

tương tự:\(\frac{1}{l_b}>\frac{1}{2}\left(\frac{1}{a}+\frac{1}{c}\right)\);\(\frac{1}{l_c}>\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

cả 2 vế đều dương,cộng vế với vế:\(\frac{1}{l_a}+\frac{1}{l_b}+\frac{1}{l_c}>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

29 tháng 6 2017

Gọi cái vế trái của BĐT cần c/m là P

Áp dụng  BĐT Cô-si dạng  \(\frac{1}{a+b+c+x+y+z}\le\frac{1}{36}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Đẳng thức xảy ra  \(\Leftrightarrow\)  a = b = c = x = y = z

và  \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)

Đẳng thức xảy ra  \(\Leftrightarrow\)  a = b = c = x = y = z

Ta có  \(\frac{1}{10a+b+c}=\frac{1}{\left(a+b\right)+\left(a+c\right)+\left(a+a\right)+\left(a+a\right)+\left(a+a\right)+\left(a+a\right)}\)

\(\le\frac{1}{36}\left(\frac{1}{a+b}+\frac{1}{a+c}+4.\frac{1}{a+a}\right)\le\frac{1}{36}\left[\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{4}\left(\frac{1}{a}+\frac{1}{c}\right)+\frac{2}{a}\right]\)

\(=\frac{1}{36}\left[\frac{1}{4}\left(\frac{2}{a}+\frac{1}{b}+\frac{1}{c}\right)+\frac{2}{a}\right]\)   (1)

Tương tự  \(\frac{1}{10b+c+a}\le\frac{1}{36}\left[\frac{1}{4}\left(\frac{2}{b}+\frac{1}{c}+\frac{1}{a}\right)+\frac{2}{b}\right]\)   (2)

và   \(\frac{1}{10c+a+b}\le\frac{1}{36}\left[\frac{1}{4}\left(\frac{2}{c}+\frac{1}{a}+\frac{1}{b}\right)+\frac{2}{c}\right]\)   (3)

Cộng (1), (2), (3) vế theo vế ta được

\(P\le\frac{1}{36}\left[\frac{1}{4}\left(\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\right)+\left(\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\right)\right]=...=\frac{1}{12}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Kết hợp  \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\le\frac{1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}{6}\)  (theo đề bài) và BĐT  \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\)

Ta có  \(P^2\le\frac{1}{144}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{144}\left[\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\right]\)

\(\le\frac{1}{144}\left(\frac{1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}{6}+\frac{2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{3}\right)\)

Suy ra  \(P^2\le\frac{1}{144}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\le\frac{1}{144}\left(\frac{1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}{6}+\frac{2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{3}\right)\)

Đặt  \(t=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)  thì  \(\frac{1}{144}t^2\le\frac{1}{144}\left(\frac{1+t}{6}+\frac{2t^2}{3}\right)\)

\(\Leftrightarrow\)  \(2t^2-t-1\le0\)  \(\Leftrightarrow\)  \(\frac{-1}{2}\le t\le1\)

Do đó  \(P^2\le\frac{1}{144}t^2\le\frac{1}{144}.1^2=\frac{1}{144}\)  \(\Rightarrow\)  \(P\le\frac{1}{12}\)

Đẳng thức xảy ra  \(\Leftrightarrow\)  \(a=b=c=3\)

29 tháng 6 2017

mk nhầm cái đoạn  \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)  đẳng thức xảy ra  \(\Leftrightarrow\)  a = b

26 tháng 9 2017

Tuấn you xem thế này có đúng ko?

Bài 1:

Xét hiệu a^2+b^2+c^2-ab-ac-bc=1/2.2(a^2+b^2+c^2-ab-ac-bc)
=1/2(2a^2+2b^2+2c^2-2ab-2ac-2bc)
=1/2[(a^2-2ab+b^2)+(a^2-2ac+c^2)+(b^2-2bc+c^2)]
=1/2.[(a-b)^2+(a-c)^2+(b-c)^2]
vì (a-b)^2+(a-c)^2+(b-c)^2>=0
nên 1/2.[(a-b)^2+(a-c)^2+(b-c)^2]>=0
hay a^2+b^2+c^2-ab-ac-bc >=0<=> a^2+b^2+c^2>=ab+ac+bc

26 tháng 9 2017

bạn xem lại đề bài nhé

nó cần c/m

\(\frac{a^2}{4}+b^2+c^2\ge ab-ac+2bc\)

chứ không phải

\(a^2+b^2+c^2\ge ab+ac+bc\)

bạn hãy thử lại sau nhé